时空序列建模:如何融合时间模型和空间模型?——时空预测中的三种经典架构 | 图神经网络:动态图(Dynamic Graph,Dynamic GNN),如何将 动态图 转换成 等价静态图?

一、如何融合时间模型和空间模型?——时空预测中的三种经典架构

介绍 Spatial-Temporal (时空) 预测模型的三种经典架构

时空预测模型主要目标是在时间序列预测的基础上,考虑各个序列之间的相互影响关系,实现更准确的预测。

例如交通预测中,考虑各个站点的邻近关系对流量的影响。    一般的时空预测模型,都需要联合 时间维度模型和空间维度模型,那么,这两个部分的模型如何联合呢?

 

业内主流的融合方法 包括融合、串联和并联三种架构。

第一种是融合架构,DCRNN采用融合的方式,在RNN的每个时间步计算中,都引入了图上的信息,也就是说,RNN在每个时刻的状态更新上,考虑的不再是原来自己序列的信息,而是空间中所有序列的信息,并以邻接矩阵作为指导。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追光者♂

谢谢你呀!一起加油!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值