

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"
循环神经网络(RNN)介绍
什么是RNN?
循环神经网络(Recurrent Neural Network, RNN)是一种特殊类型的人工神经网络,专门设计用于处理序列数据,如文本、语音、视频等。与传统的前馈神经网络不同,RNN在隐藏层之间引入了循环连接,使得网络能够捕捉序列数据中的动态行为和时间依赖性。
上图展示了一个简单的RNN结构,其中 x t x_t xt 表示时间步 t t t 的输入, h t h_t ht 表示时间步 t t t 的隐藏状态, o t o_t ot 表示时间步 t t t 的输出。可以看到,隐藏状态 h t h_t ht 不仅取决于当前输入 x t x_t xt,还取决于前一时间步的隐藏状态 h t − 1 h_{t-1} ht−1,这就形成了一个循环结构,使得RNN能够捕捉序列数据中的长期依赖关系。
RNN的基本原理
递归神经网络单元
RNN的核心是一个递归神经网络单元,它根据当前输入 x t x_t xt 和前一时间步的隐藏状态 h t − 1 h_{t-1} ht−1 计算当前时间步的隐藏状态 h t h_t ht,计算公式如下:
h t = f ( x t , h t − 1 ) h_t = f(x_t, h_{t-1}) ht=f(xt,ht−1)
其中, f f f 是一个非线性函数,通常使用 tanh 或 ReLU 作为激活函数。
前向传播
在前向传播过程中,RNN按照时间步骤依次计算每个时间步的隐藏状态和输出,具体过程如下:
- 初始化隐藏状态 h 0 h_0 h0,通常将其设置为全0向量。
- 对于每个时间步 t t t:
- 计算当前时间步的隐藏状态: