使用ncnn模型预测获取错误的结果

当使用ncnn进行预测时遇到错误结果,本文提供了一系列排查步骤,包括检查caffe模型的存储格式、输入数据的预处理、数据连续性、通道处理、Blob选择以及避免Extractor复用等,旨在帮助提升模型预测的准确性和可靠性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导读

在使用ncnn来构建c++的预测代码时,有时候得到的结果与python代码的预测结果不一致,这样会降低模型预测的准确率甚至会使得模型的预测结果变得不可靠,这时候我们就需要检测自己的代码是否存在问题,这篇文章将会介绍,当出现这种情况时,我们应该如何来解决。

caffemodel should be row-major

如果使用的是caffe的模型,需要注意ncnn的caffe2ncnn工具转换模型的时候是以caffe的模型为row-major的格式来进行转换的。row-major以下面这个3×3的权重参数为例

a b c
d e f
g h i

需要注意的是matlab caffe是以col-major的格式来存储模型参数的,所以针对matlab caffe你需要对它的参数进行转置处理,或者使用c++ caffe进行重新训练。除此之外,你还可以通过matcaffe2caffe工具来进行转换

检查输入数据的格式

需要注意输入图片数据的通道顺序,如果训练和测试的顺序不一致会导致模型预测准确率降低。如果你使用的是c++ ca

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

修炼之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值