numa

本文深入探讨了NUMA(非一致性内存访问)架构的诞生背景及其细节。在CPU核心数量增加导致UMA架构面临挑战的背景下,NUMA架构通过将内存和CPU核心分配到不同的Node,每个Node拥有独立的内存控制器,解决了内存访问的远近问题,从而提高系统性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NUMA的诞生背景

在NUMA出现之前,CPU朝着高频率的方向发展遇到了天花板,转而向着多核心的方向发展。

在一开始,内存控制器还在北桥中,所有CPU对内存的访问都要通过北桥来完成。此时所有CPU访问内存都是“一致的”,如下图所示:

UMA

这样的架构称为UMA(Uniform Memory Access),直译为“统一内存访问”,这样的架构对软件层面来说非常容易,总线模型保证所有的内存访问是一致的,即每个处理器核心共享相同的内存地址空间。但随着CPU核心数的增加,这样的架构难免遇到问题,比如对总线的带宽带来挑战、访问同一块内存的冲突问题。为了解决这些问题,有人搞出了NUMA。

NUMA构架细节

NUMA 全称 Non-Uniform Memory Access,译为“非一致性内存访问”。这种构架下,不同的内存器件和CPU核心从属不同的 Node,每个 Node 都有自己的集成内存控制器(IMC,Integrated Memory Controller)。

在 Node 内部,架构类似SMP,使用 IMC Bus 进行不同核心间的通信;不同的 Node 间通过QPI(Quick Path Interconnect)进行通信,如下图所示:

NUMA

一般来说,一个内存插槽对应一个 Node。需要注意的一个特点是,QPI的延迟要高于IMC Bus,也就是说CPU访问内存有了远近(remote/local)之别,而且实验分析来看,这个差别非常明显

在Linux中,对于NUMA有以下几个需要注意的地方:

  • 默认情况下,内核不会将内存页面从一个 NUMA Node 迁移到另外一个 NUMA Node;

  • 但是有现成的工具可以实现将冷页面迁移到远程(Remote)的节点:NUMA Balancing;

  • 关于不同 NUMA Node 上内存页面迁移的规则,社区中有依然有不少争论。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值