银行系统中存在大量的非结构化信息,这些信息不仅数据量庞大,而且种类繁多,处理起来相对困难,利用程度有待提升。自然语言处理技术(NLP)[1]能够帮助银行更有效地从客户信息、市场动态、政策公告等非结构化数据中提取出有价值的信息。这些信息可以进一步应用于银行的客户行为分析、信用风险评估、产品推荐和客户服务改进等多个方面,为决策提供更加准确的数据支持,并显著提高银行对市场变化的敏感度和反应速度。
01
NLP概述和发展介绍
NLP(Natural Language Processing,自然语言处理)旨在实现人与计算机之间的自然语言通信。它主要由两大核心部分组成:自然语言理解(NLU)和自然语言生成(NLG)。自然语言理解涉及的技术包括但不限于分词、词性标注、句法结构分析、文本自动分类以及文本向量化表示等,这些技术帮助计算机理解和解析人类语言的内容与结构。而自然语言生成则涵盖了机器翻译、智能问答系统、自动文本摘要生成等领域,旨在让计算机能够生成自然流畅、符合语境的人类语言文本。通过这些技术,NLP极大地推动了人机交互的便捷性和智能化水平。</