hive小文件治理

本文探讨了Hive中遇到的小文件问题及其原因,并提出了两种解决方案:源头遏制,包括分析Spark AQE的工作原理和动态合并shuffle分区;以及落地合并,详细介绍了方案步骤和实际效果。通过这些方法,旨在优化HDFS性能,提升数据处理效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hive小文件治理

背景

hive中的数据最终落地到HDFS上,在HDFS上不可避免的有小文件产生,小文件问题,会产生诸多问题,比如:
1.对底层存储HDFS来说,HDFS本身就不适合存储大量小文件,小文件过多会导致namenode元数据特别大, 占用太多内存,严重影响HDFS的性能
2.对hive来说,在进行查询时,每个小文件都会当成一个块,启动一个Map任务来完成,而一个Map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的Map数量是受限的。

原因

产生小文件有诸多原因:
1.直接向hive表中插入数据,这种方式每次插入时都会产生一个文件,多次插入少量数据就会出现多个小文件,但是这种方式生产环境很少使用,可以说基本没有使用的
insert into table A values (1,'zhangsan',88),(2,'lisi',61)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bingoabin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值