🔥 T5由谷歌发表于2019,《Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer》,最终版本发布在:JMLR。
一句话总结T5: 大一统模型,seq2seq形式完成各类nlp任务,大数据集预训练,大量实验,财大气粗,诚意满满,给nlp预训练模型领域提供了一个通用框架,提供了一套建议参数。
作者测过包括encoder-decoder,decoder,prefix lm。 几种不同的结构主要是因为attention mask机制不一样,其中prefix lm可看作是encoder 和 decoder 的融合体,一部分如 encoder 一样能看到全体信息,一部分如 decoder 一样只能看到过去信息。最近开源的 UniLM, ChatGLM_v1便是此结构。