产生背景
红外探测器因为原理和工艺问题一直存在非均匀问题,处理算法过去一般使用单点矫正和两点定标矫正,并不是这两种矫正多优秀,主要还是受限于当时的嵌入式主控芯片可怜的计算能力,随着芯片技术的发展,更加强大的算力变得廉价,一些资源消耗大的算法也开始落地了。
优势
两点定标算法任然无法解决温漂问题,需要挡片间隔几帧就再采集均匀输入做减背景,弹片会增加系统功耗,同时机械复杂稳定性也成问题,主要是挡片会导致输入的图像中断几帧的情况。这是基于场景的非均匀矫正就变得重要。
非均匀矫正是一种基于简单神经元系统的进行多帧参考的矫正方法。
实现步骤
神经网络非均匀性校正以线性模型为基础,红外探测器的感光单元的响应模型可表示为
y=ax+b
式中,y是红外焦平面阵列输出的具有非均匀性的原始图像,a和 b是
第(i,j)个探测单元的增益和偏置系数,x是理论真实的输入图像。
假设经非均匀性校正后的表达式为
Q = Gy+o
式中,G和 O是像元的增益和偏置校正系数,Q是校正后输出图像。
基于神经网络的非均匀校正方法在像元(