红外图像处理-基于场景的非均匀矫正

本文介绍了红外图像处理中的非均匀性问题,传统矫正方法如单点和两点定标存在局限。随着芯片技术进步,基于场景的非均匀矫正成为可能。这种方法利用神经网络模型,通过多帧参考进行矫正,避免了温漂问题和机械复杂性。实现步骤包括建立响应模型、设定误差函数并用最陡下降法更新增益和偏置系数,从而实时调整矫正系数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

产生背景

红外探测器因为原理和工艺问题一直存在非均匀问题,处理算法过去一般使用单点矫正和两点定标矫正,并不是这两种矫正多优秀,主要还是受限于当时的嵌入式主控芯片可怜的计算能力,随着芯片技术的发展,更加强大的算力变得廉价,一些资源消耗大的算法也开始落地了。

优势

两点定标算法任然无法解决温漂问题,需要挡片间隔几帧就再采集均匀输入做减背景,弹片会增加系统功耗,同时机械复杂稳定性也成问题,主要是挡片会导致输入的图像中断几帧的情况。这是基于场景的非均匀矫正就变得重要。
非均匀矫正是一种基于简单神经元系统的进行多帧参考的矫正方法。

实现步骤

神经网络非均匀性校正以线性模型为基础,红外探测器的感光单元的响应模型可表示为

y=ax+b

式中,y是红外焦平面阵列输出的具有非均匀性的原始图像,a和 b是
第(i,j)个探测单元的增益和偏置系数,x是理论真实的输入图像。
假设经非均匀性校正后的表达式为

Q = Gy+o

式中,G和 O是像元的增益和偏置校正系数,Q是校正后输出图像。

基于神经网络的非均匀校正方法在像元(

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值