自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1711)
  • 资源 (17)
  • 收藏
  • 关注

原创 AI: RAG方案大比拼

本文对比分析了主流RAG(检索增强生成)框架的核心特性、适用场景及性能差异,为企业选型提供决策参考。主要框架包括LangChain(生态丰富)、Haystack(生产级优化)、DSPy(自动优化)、LlamaIndex(复杂数据处理)和txtai(多模态支持)。文章详细对比了五种RAG模式的架构复杂度、检索精度及适用规模,并给出选型建议:简单问答用Naive RAG,动态知识库选Advanced RAG,多源异构数据适合Modular RAG。同时探讨了RAG与微调的差异及混合方案策略,推荐初期用RAG快速

2025-08-09 23:52:43 581

原创 AI: Cherry Studio 是一款跨平台的开源 AI 桌面客户端

Cherry Studio:开源跨平台AI桌面客户端 Cherry Studio是一款支持Windows、macOS和Linux的开源AI工具,整合了40+主流AI模型(如OpenAI、Gemini、Claude等),提供多模态对话、知识库管理、代码生成和文生图等功能。其特点包括:本地化数据存储保障隐私、开源社区驱动(GitHub 24k+ Stars)、支持RAG技术增强问答准确性,以及300+预配置行业助手。适用于开发者、研究教育、企业及创意工作者,最新版本v1.5.4优化了性能并新增全链路追踪功能。

2025-08-09 23:49:13 370

原创 GPT-5的统一引擎与国产模型的MoE架构各有什么优势和局限性

摘要:GPT-5的"统一引擎"与国产模型的MoE架构各具特色。GPT-5通过动态路由Transformer实现多模态深度融合,支持复杂任务链但算力消耗巨大;国产MoE架构(如Qwen)采用稀疏激活机制,计算效率高且易于垂直领域部署,但存在路由稳定性不足等问题。技术对比显示,GPT-5擅长通用多模态任务,国产模型更适合行业纵深应用。未来可能走向技术融合,GPT-5或引入MoE层优化能耗,国产模型则可能增强通用能力。两者分别代表了AGI探索与行业落地的不同路径,最终可能形成互补发展的生态格局

2025-08-08 09:01:11 1705

原创 GPT-5震撼发布:博士级AI登场,国产模型开源破局

OpenAI发布GPT-5,实现"博士级"AI能力跃升,在编程、写作、医疗等领域展现突破性进展。国产AI模型以开源生态和垂直应用应对,通义千问登顶编程榜,沧渊深耕海洋科技,形成差异化竞争优势。全球AI进入双轨发展阶段:美国主导通用智能前沿,中国聚焦行业落地与开源生态。技术竞争正从单一模型转向全栈能力与产业转化的综合比拼。

2025-08-08 08:57:49 805

原创 Flowable:通过流程实例ID获取持久化表单数据和检查流程实例审批状态的功能

本文介绍了在Spring Boot中整合Flowable工作流引擎的实现方法,主要包含通过流程实例ID获取表单数据和检查审批状态功能。Controller层提供RESTful接口,Service层利用Flowable的HistoryService、RuntimeService等核心API实现具体逻辑。表单数据从历史变量表获取,审批状态通过查询运行时任务和历史流程实例判断。文章还给出了接口测试示例,并提出了性能优化、异常处理等注意事项,建议高频状态检查改用业务表字段以提高效率。该实现基于Flowable 6.

2025-08-06 22:15:09 600

原创 Flowable:根据processInstanceId获取flowable里持久化的表单数据的通用方法

本文介绍了一个通用的Java方法,用于从Flowable流程引擎中获取流程实例的表单数据。该方法通过合并两种数据源(HistoricVariableInstance和HistoricFormProperty)来全面收集表单数据,包括启动表单和任务表单提交的信息。核心功能包括: 通过流程实例ID查询历史变量和表单属性 合并两种数据源确保数据完整性 提供文件上传等特殊情况的处理建议 包含性能优化和数据类型转换的注意事项 该方法适用于大多数Flowable表单数据持久化场景,支持JSON表单等外置表单类型,并提供

2025-08-06 22:12:06 413

原创 在 Flowable 工作流引擎中,如何获取表单数据信息

摘要: Flowable工作流引擎获取表单数据的方法因表单类型(动态/外置)和节点类型(启动/任务/历史)而异。核心方法包括: 启动节点:FormService.getStartFormData()获取表单定义,RuntimeService读取流程变量; 任务节点:FormService.getTaskFormData()查询字段定义,流程变量或历史服务获取提交值; 历史数据:通过HistoryService查询持久化数据; 外置表单需单独部署,数据通过formKey映射为流程变量。 原理:表单数据均存储为

2025-08-06 22:08:11 763

原创 AI加速器三大技术栈详解:CUDA、ROCm与CANN

本文全面解析AI三大加速平台:NVIDIA CUDA、AMD ROCm和华为CANN,从架构设计到实战应用。CUDA作为行业标准,生态成熟但封闭;ROCm开源跨平台,生态仍在完善;CANN专为国产昇腾NPU设计,软硬协同优势明显。文章对比了三者在编程模型、工具链和适用场景的差异,并给出选型建议:CUDA适合成熟HPC应用,ROCm适合成本敏感型场景,CANN符合国产化需求。未来趋势呈现CUDA生态封锁与开源方案并进的局面,开发者需根据实际需求选择技术栈。

2025-08-06 21:59:01 1092

原创 Flowable、Activiti 和 Camunda的演进

三个主流工作流引擎Flowable、Activiti和Camunda均源自jBPM项目,因技术路线和商业策略分歧而独立发展。Camunda从Activiti 5分叉而来,专注于高性能和企业级监控;Flowable则基于Activiti 6重构,强化多模型支持;Activiti 7因社区活跃度下降而式微。技术层面,Camunda采用双异步机制和SAGA事务,适合高并发场景;Flowable支持动态流程调整和多模型编排;Activiti则适合轻量级需求。选型建议:追求性能选Camunda,需灵活流程选Flowa

2025-08-04 23:29:28 562

原创 深入剖析Flowable——原理、源码与实践全解析

摘要:本文深度解析Flowable工作流引擎的架构原理与实践应用。从分层架构设计(持久层/核心层/服务层)到BPMN 2.0解析机制,详细剖析了异步处理引擎、事务管理等核心原理。通过源码示例展示了命令模式与责任链的设计实现,并提供了Spring Boot集成配置方案。文章还分享了企业级优化策略,包括性能调优、灰度发布和安全加固,最后展望了云原生、AI集成等发展方向。适用于需要构建高效业务流程系统的开发者和架构师参考。

2025-08-04 23:20:35 1146

原创 AI:通俗易懂地解释Transformer的注意力机制

Transformer 的注意力机制就像人脑的聚光灯,能在嘈杂信息中精准聚焦关键内容。它通过Q(问题)、K(关键词)和V(实际值)三个角色协同工作:先计算词语间的关联度,再给重要信息分配更高权重,最后整合关键内容形成准确理解。相比传统RNN的线性处理,自注意力机制让所有词语直接"对话",解决了长距离依赖问题。多头注意力则从多个角度并行分析,如同多盏聚光灯同时照亮不同侧面。这种机制支持并行计算、增强可解释性,成为GPT等大模型的核心基础,让AI真正学会了像人类一样的"专注&quo

2025-07-23 00:46:11 664

原创 AI标准化协议: MCP(Model Context Protocol,模型上下文协议), AI的“万能插座”和“协作引擎”

摘要: MCP(Model Context Protocol)是一种标准化协议,旨在统一大型语言模型与外部工具的交互方式,解决接口碎片化、能力局限和安全风险问题。其技术架构分为执行环境、通信枢纽和服务终端三层,支持动态能力发现、细粒度权限控制和多种通信模式。应用场景涵盖企业智能化、工业物联网和消费级AI助手,显著提升开发效率与协作能力。MCP通过模块化设计和开放生态重构AI价值链,推动AI普惠化。未来将与5G、边缘计算等技术融合,成为连接AI"思考层"与"行动层"的关

2025-07-23 00:14:23 911

原创 AI 从对话到行动:一文看懂Prompt、Agent、MCP、Function Calling与大模型

摘要: AI协作的核心技术包括Prompt(用户指令)、Agent(任务规划)、Function Calling(工具调用)和MCP(统一接口协议)。Prompt指导AI响应,Function Calling让AI调用外部工具,Agent自主拆解复杂任务,MCP标准化工具连接。四者协同工作,使AI从聊天机器人升级为能执行实际任务的智能助手。例如,规划旅行时,用户通过Prompt提出需求,Agent分解步骤,调用航班查询等工具,经MCP整合数据,最终生成完整方案。这一技术演进将AI从“对话”推向“行动”,逐步

2025-07-22 23:51:26 880

原创 AI:主流激活函数(Activation Function)及其使用场景

摘要:本文系统梳理了神经网络中主流和新兴的激活函数,包括Sigmoid类、ReLU家族、平滑近似函数等7大类。详细分析了Sigmoid、Tanh、ReLU、GELU、Swish等典型激活函数的数学公式、适用场景及优缺点,并给出PyTorch代码示例。文章指出,不同激活函数适用于不同任务场景,如ReLU适合默认隐藏层,GELU适用于Transformer,Swish在深度网络表现优异。最后提供了激活函数选择建议,强调需根据具体任务需求进行实验验证。

2025-07-22 02:05:17 742

原创 AI:激活函数(Activation Function),深度网络非线性能力的数学支点

激活函数是神经网络中将仿射变换结果映射到非线性空间的唯一算子,它决定了网络的表达能力、优化动力学与数值稳定性。本文用统一的数学符号系统回顾 20 余种主流激活及其变体,给出梯度传播解析、初始化耦合关系、计算复杂度对比以及在 CNN、RNN、Transformer、量化网络中的落地建议,并附 PyTorch 与 JAX 的代码片段。

2025-07-22 01:59:49 621

原创 AI:词嵌入(Word Embedding)中的未登录词(Out-Of-Vocabulary, OOV)问题

摘要:未登录词(OOV)问题是NLP中测试词汇未出现在训练词表中的现象,主要由语言动态性、数据局限性和技术限制导致。OOV会降低模型性能,造成信息损失。主流解决方案包括子词分割(如WordPiece、BPE)、字符级模型和混合策略。不同语言OOV率差异显著,中文处理需结合字符级拆分和语素特征。最新进展包括动态词汇扩展和多模态嵌入。实践中建议优先选择支持子词处理的模型(如BERT),中文任务可优化使用全词掩码模型。OOV问题反映语言无限性与模型有限性的矛盾,虽在子词技术推动下有所缓解,但跨语言和低资源领域仍有

2025-07-18 23:11:42 787

原创 AI:词嵌入技术(Word Embedding)

摘要:词嵌入技术通过将词语映射为低维向量,捕捉语义和语法特征,是自然语言处理(NLP)的核心基础。其发展经历了从早期神经概率模型到Word2Vec、GloVe等静态嵌入,再到BERT等动态上下文感知模型的演进。当前主流技术各具特点,如Word2Vec训练快、FastText解决未登录词问题,而BERT具备强大的上下文理解能力。前沿趋势包括多模态嵌入、领域自适应和模型优化。应用场景广泛,涵盖文本分类、机器翻译、推荐系统等,并催生了OpenAI Embeddings等商业API。未来面临偏见消除、多语言支持等挑

2025-07-18 23:09:19 1054

原创 AI: 一文读懂循环神经网络(RNN)

摘要: 循环神经网络(RNN)是处理序列数据的核心模型,通过隐藏状态传递历史信息实现序列依赖建模。其核心结构在每个时间步接收当前输入和上一状态,通过时间展开形成链式结构。针对传统RNN的梯度消失问题,LSTM引入遗忘门、输入门和输出门增强长期记忆能力,GRU则通过简化门控结构提升效率。RNN在自然语言处理(文本生成、情感分析)、时间序列预测和语音识别等领域有广泛应用,但面临梯度不稳定和训练复杂度高的挑战。PyTorch等框架为RNN实现提供了便捷工具,LSTM等改进模型显著提升了序列建模性能。未来结合注意力

2025-07-17 00:13:08 1175

原创 AI: 卷积神经网络(CNN)

卷积神经网络(CNN)是处理网格数据(如图像)的核心深度学习模型,通过局部连接和权值共享实现高效特征提取。其核心组件包括卷积层(提取局部特征)、激活函数(引入非线性)、池化层(下采样)和全连接层(分类)。经典架构如LeNet、AlexNet、VGG、ResNet等不断推进CNN性能。优势在于参数高效和自动特征学习,但存在长距离依赖捕捉困难等问题。CNN广泛应用于图像分类、目标检测等任务,配合PyTorch等框架可实现高效模型构建。未来发展趋势是与注意力机制结合,提升全局建模能力。

2025-07-17 00:09:20 636

原创 AI:机器学习中的正则化(Regularization)

正则化(Regularization)是机器学习中防止模型过拟合的核心技术,通过在损失函数中添加惩罚项来约束模型复杂度,提升泛化能力。

2025-07-16 00:16:03 582

原创 AI: 以房屋价格预测为例讲明白梯度下降、线性回归、损失函数、欠拟合、过拟合与正则化

通过一个​​房屋价格预测​​的实例,串联梯度下降、线性回归、损失函数、欠拟合、过拟合与正则化的关系。采用“场景→问题→方法”的逻辑链,结合数学原理与形象类比,助你建立系统性认知。

2025-07-16 00:03:29 987

原创 AI: 欠拟合 过拟合 损失函数 线性回归 一文搞懂

机器学习模型的两大挑战与核心原理 模型训练面临欠拟合(高偏差)和过拟合(高方差)双重困境:欠拟合因模型过于简单,需增加复杂度或特征工程;过拟合因模型过于复杂,可通过正则化、早停法或数据增强解决。损失函数(如MSE、交叉熵)是优化核心,量化误差并指导参数调整。线性回归作为基础方法,可通过扩展特征或正则化升级。整个过程形成“训练-评估-迭代”闭环,理解这些概念的关联是提升模型性能的关键。 (字数:150)

2025-07-14 18:57:33 656

原创 AI: 线性函数、非线性函数、神经网络、前向传播、反向传播等知识一文搞懂

​​线性函数的本质与局限​​:用数学公式和几何图示介绍线性特性,分析其在复杂模式识别中的不足。​​非线性函数的变革力量​​:结合实例说明非线性如何突破线性约束,并对比常见激活函数(ReLU、Sigmoid)的数学特性。​​神经网络:分层抽象的艺术​​:以工厂流水线为类比,拆解输入层、隐藏层、输出层的协作机制。​​前向传播:数据的正向旅程​​:分步骤演示数据从输入到输出的计算过程,包含权重与偏置的作用。​​训练机制:误差的反向优化​​:通过梯度下降和链式法则解释参数更新原理,讨论梯度消失/爆炸问题。

2025-07-14 18:53:06 1030

原创 IoT:开发板分类 51系列、ARM系列、DSP、PIC系列、AVR系列

关于开发板分类,提供了按处理器架构的分类:包括51系列、ARM系列、DSP、PIC系列、AVR系列等。提到了按结构形式的分类:一体开发板 vs 核心板+底板模式es

2025-07-12 17:57:26 800

原创 IoT: ESP32-C6 全球首款获得 PSA Certified Level 2认证的RISC-V芯片

ESP32-C6安全技术解析 作为全球首款获PSA Certified Level 2认证的RISC-V芯片,ESP32-C6通过硬件隔离+加密加速+TEE构建多层防护: 1️⃣ 硬件安全:物理内存保护(PMP)、闪存加密(AES-XTS)、数字签名外设(RSA/ECC)防止数据泄露; 2️⃣ 软件防护:安全启动逐级验签、ESP-TEE隔离运行敏感操作; 3️⃣ 合规认证:满足欧盟CRA等法规,支持Matter协议、工业OTA等场景。 价值:以开源架构实现银行级安全,推动智能家居/医疗设备等高安全需求应用落

2025-07-10 23:33:31 757

原创 IoT:物联网芯片 ESP32系列

ESP32系列产品解析:ESP32系列是高性能低功耗物联网芯片,涵盖多种型号如ESP32(双核Wi-Fi 4/BT 4.2)、ESP32-S3(AI加速)、ESP32-C6(Wi-Fi 6/PSA安全认证)等,适用于智能家居、工业控制等场景。开发支持ESP-IDF、Arduino等框架,AI边缘化与RISC-V架构是未来趋势。选型需考虑AI需求、无线协议及成本,其中ESP32-C6以安全性和多协议并发成为标杆。

2025-07-10 23:29:39 774

原创 AI革命性架构:Transformer

Transformer是NLP领域的革命性架构,由Google在2017年提出。其核心创新在于完全基于自注意力机制

2025-07-08 23:08:36 964

原创 AI:Transformer的原理架构

Transformer模型的核心是自注意力机制,通过查询、键、值向量计算词间相关性,并通过多头机制捕捉复杂关系。编码器包含多头自注意力和前馈网络,使用残差连接和层归一化;解码器在此基础上增加掩码机制和编码器-解码器注意力,用于序列生成。该架构通过并行处理提升效率,成为自然语言处理的重要基础。

2025-07-08 08:33:20 544

原创 LoRA(Low-Rank Adaptation,低秩适应)

LoRA(低秩适应)技术通过冻结预训练大模型权重,仅训练新增的小矩阵(如512×4和4×512),实现高效微调。相比全量微调,LoRA可减少99%以上的参数量,降低显存需求至1/3,同时保持性能无损。其核心是将新知识注入低秩矩阵BA,推理时能与原权重W合并实现零延迟。该技术广泛应用于语言模型、AI绘画等领域,支持多任务动态切换,并衍生出QLoRA等优化方案,成为大模型轻量化适配的关键方法。

2025-07-06 21:13:32 621

原创 《Attention Is All You Need》:Transformer 架构的诞生

《Attention Is All You Need》论文提出革命性的Transformer架构,彻底改变NLP领域。该架构摒弃传统RNN结构,采用自注意力机制和多头注意力,实现高效并行计算和长距离依赖建模。在WMT机器翻译任务中表现优异,BLEU分数显著提升。Transformer的优势包括高度并行化、强大序列建模能力和广泛应用潜力,成为NLP领域主流架构,并拓展至计算机视觉等其他领域。这一创新为深度学习提供了新思路,未来在非文本模态处理等方面仍有广阔发展空间。

2025-07-03 23:41:40 934

原创 AI:《Attention Is All You Need》提出了Transformer

《Transformer:基于注意力机制的序列建模新架构》摘要(150字) 本文整理谷歌2017年里程碑论文《Attention Is All You Need》的核心内容,呈现Transformer架构的中英对照解析。该模型彻底摒弃RNN/CNN,仅用自注意力机制实现序列建模,创新性提出多头注意力、位置编码等模块,解决了长距离依赖与并行计算难题。中英对照显示:编码器-解码器结构通过残差连接和层归一化稳定训练,其"注意力即一切"的理念催生了BERT、GPT等大模型。研究证实Transfo

2025-07-03 23:36:41 679

原创 AI:监督微调(Supervised Fine-Tuning, SFT)

监督微调(SFT)是深度学习中的关键迁移学习技术,通过在预训练大模型基础上使用少量标注数据调整参数,使其适配特定任务。核心原理是引导模型知识迁移,避免从头训练的高成本。主流算法包括LoRA、QLoRA等参数高效方法,通过冻结大部分参数仅优化少量结构。实施流程包含模型选择、数据标注、预处理、微调训练及评估部署。当前面临幻觉问题、效率优化等挑战,未来将向多模态扩展发展。SFT作为"预训练-微调"范式的核心,推动AI在垂直领域的深度应用,相关工具链如Hugging Face TRL、DeepS

2025-07-02 00:33:18 1296

原创 AI:微调框架 LLaMA-Factory(Large Language Model Factory)

LLaMA-Factory是由北航团队开源的大语言模型微调框架,支持100多种主流模型(如LLaMA 3、ChatGLM等)和多类微调技术(LoRA、QLoRA等)。其核心优势包括:1)高效训练算法,可降低显存占用至LoRA的1/4;2)全流程工具链,覆盖从数据准备到模型部署;3)支持多种训练范式(SFT、PPO等)。通过4比特量化技术,消费级GPU即可训练13B参数模型。项目提供Web UI和命令行两种操作方式,显著降低大模型定制门槛,适用于广告生成、智能客服等场景。开源地址:https://github

2025-07-02 00:00:34 950

原创 amd64 和 arm64

摘要:amd64和arm64是两种主流的64位处理器架构,分别适用于不同场景。amd64(x86-64)基于复杂指令集(CISC),提供高性能计算能力,主要用于PC和服务器;arm64(AArch64)采用精简指令集(RISC),强调能效比,适合移动设备和IoT应用。关键区别在于amd64侧重性能,而arm64注重低功耗。选择架构需综合考虑性能需求、功耗限制和应用场景。

2025-06-29 17:07:09 1088

原创 Dify的默认端口怎么修改

修改 Dify 默认端口需在 .env 文件中调整 NGINX_PORT 和 EXPOSE_NGINX_PORT 参数(如改为6060),重启服务生效。注意端口冲突检查,修改后需在应用URL中补充新端口。建议启用HTTPS并避免使用默认端口以提升安全性。国内部署可替换Docker镜像源加速。

2025-06-29 16:59:12 1101

原创 Windows下安装Dify

在Windows上安装Dify的步骤包括:1)安装Docker Desktop并验证;2)可选安装Git;3)克隆或下载Dify源码;4)配置环境变量并启动Docker容器;5)通过浏览器访问127.0.0.1完成初始化设置。要求系统至少2核CPU和4GB内存,建议配置国内Docker镜像加速源。安装完成后可对接AI模型进行扩展使用。

2025-06-29 16:53:01 537

原创 Docker安装

安装Docker Desktop并配置镜像加速源的详细步骤,结合了国内常用镜像源(如清华源、阿里云等)的配置方法

2025-06-29 16:51:46 847

原创 Dify的本地安装

Dify本地安装指南摘要:需预先安装Docker和Git,支持Windows/Linux/macOS系统。获取源码后,修改环境变量和镜像源加速配置,执行docker-compose启动服务。首次访问需注册管理员账户并配置API密钥。常见问题包括镜像拉取失败(需更换源)、端口冲突(修改端口号)及插件安装超时(检查日志并延长超时时间)。国内用户建议配置清华等国内镜像源提升下载速度。

2025-06-29 16:43:22 505

原创 大语言模型(LLM)应用开发平台:Dify

Dify是一个开源大语言模型应用开发平台,融合后端即服务(BaaS)和LLMOps理念,提供低代码/无代码开发环境,支持主流LLM模型和RAG引擎。其核心功能包括知识库构建、Agent工作流编排和多模型兼容,适用于企业知识管理、智能客服等场景。平台支持云服务和本地私有化部署,提供API集成能力,适合需要定制化AI解决方案的企业用户。相比Coze等竞品,Dify在灵活性、私有化部署和复杂任务处理上更具优势,但需要一定的技术背景。

2025-06-29 16:39:20 882

原创 RAG管理工具:AnythingLLM 管理你的私有化知识库和本地AI模型

AnythingLLM 是一款功能强大的​​开源全栈 AI 应用程序​​,专为构建私有化知识库和智能问答系统设计。它通过检索增强生成(RAG)技术,将用户提供的文档(如 PDF、TXT、DOCX)转化为大语言模型(LLM)可理解的上下文,实现基于本地数据的精准问答。

2025-06-28 23:31:23 924

芋道-工作流表-ruoyi-vue-pro-bmp

芋道-工作流表-ruoyi-vue-pro-bmp

2025-04-11

mysql常用命令

mysql常用命令mysql常用命令

2008-01-09

4+1视图模型

4+1视图模型

2010-11-02

uml工具比较文档一览表

uml工具比较文档 UML相关工具一览(截止2010年10月)

2010-10-28

vsftpd手册

ftp服务 linux下vsftpd服务的安装配置

2008-01-04

ajax框架源码

征服prototype script.aculo.us dojo 框架码

2007-12-27

SYBASE PowerDesigner 12 使用指南

SYBASE PowerDesigner 12 使用指南

2008-01-09

JavaScript植物大战僵尸

版權所有:LonelyStar LonelyStar LonelyStar

2010-09-21

Ehcache用户手册

Ehcache用户手册

2013-01-17

精通spring2源码

精通spring2的源码

2007-12-27

Spring-Reference_zh_CN.chm

spring2.x的中文參考文档; spring2.x的中文參考文档

2010-04-20

spring-security-2.0.x

spring-security-2.0.x 权限安全手册,不可多得!

2013-01-17

邱郁惠-UML和OOAD快速入门-随书ppt

邱郁惠-UML和OOAD快速入门-随书ppt

2010-11-02

使用 Ajax 实现本地化后的客户端消息验证

使用 Ajax 实现本地化后的客户端消息验证

2009-03-24

ebay的j2ee构架

ebay的j2ee构架

2007-12-27

虚拟光驱daemo

虚拟光驱虚拟光驱虚拟光驱虚拟光驱

2008-01-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除