照片由 丹·克里斯蒂安·佩杜雷什 on Unsplash
一、说明
在本文中,我们将探讨希尔伯特空间这个非常重要的主题。希尔伯特空间由于其特性而经常出现在物理和工程中。为了理解希尔伯特空间,我们从度量空间的定义开始。
二、基础概念
集合是定义明确的元素的集合。虽然集合本身可能不是很有用,但它们提供了一个非常强大的框架,可以通过笛卡尔积等操作系统地研究更复杂的对象。集合通常使用大写字母表示。
2.1 什么是度量空间
考虑一个任意非空集合 M。定义具有以下属性的操作 d:
- d(x,y) 是一个实数。从形式上讲,d 是一个 Mapping:
- 非负性质:d(x,y) ≥ 0
- d(x,y) = 0 iff x=y
- 对称性:d(x,y) = d(y,x)
- 三角不等式 d(x,y) ≤ d(x,z)+d(z,y)
其中 x、y 和 z 是 M 的元素。配备有这种运算 d 的集合 M 称为度量空间,表示为 (M,d)。
d 有时被称为距离。
应该注意的是,M 本身不是一个度量空间,因为 d 必须单独定义。
示例:考虑实数 R 的集合。 d₁ 和 d₂ 都是有效的指标。 d₂ 可能看起来很奇怪,但仍然有效。
通常,指标是从上下文中理解的,例如实数集。
自定义指标的常见示例是机器学习算法(如 K 最近邻)中使用的距离度量。
2.2 完备性讨论
所谓完备性,可以理解为,数集内的运算,包括求极限,都是封闭的。 即,实数的运算结果都是实数,求极限的结果也都是实数,所以说实数有完备性。 而有理数集的极限有可能是无理数,无理数集运算的结果和极限也都有可能是有理数,所以它们都不是封闭的,因此都没有完备性。
一般来说,判别序列是否完备,就用柯西序列判别。
2.3 柯西序列定义
柯西序列是这样的序列:在数域M上,给出数列,a1,a2 ...ai..;对于任意给定的r>0,有
; 也就是说,序列下标
时,该序列接近一个常数。这似乎没啥问题,但是偏偏出现一个反例:
给出典型的柯西序列的不完备反例:在有理数数域中,取如下序列,显然这是一个柯西序列
该序列有极限,问题是
不是一个有理数,这就导致一个“有理数内部的柯西序列的极限不是有理数!!”。这个问题称为有理数不完备!。同样“无理数也不完备”,只有实数才是完备的。
如图表示不完备性:就是有理数中的一个数列,按某个运算法则,其结果从有道理集合跑到集合之外。这种现象称为不完备。
2.4定义在理数的距离空间不能完备
考虑有理数( Rational Numbers) 的度量空间,其中度量为 |x-y|。柯西序列
显然,当,因为e不是个有理数,因而导致这个距离为0无法完成。当然改成实数域就没有问题了。
2.5 完备的空间
度量空间中的序列 xn 是从自然数集到度量空间 X 元素的映射。也就是说,它是属于 X 的元素的有序序列。
柯西序列是元素在度量意义上不断靠拢的序列 d。从形式上讲,每个 r > 0 都存在一些 N,因此:
如果在 (X, d) 上定义的每个柯西序列 xn 收敛到 (X, d) 中的元素,则度量空间 (X, d) 是完整的。也就是说,取 (X, d) 上柯西的所有可能序列,如果它们最终收敛到 (X, d) 中的元素,则它是一个完整的空间。
三、线性空间
标量 Field 上的线性空间 V 是定义加法和标量乘法运算的集合。总结一下:
- 元素添加是交换的和关联的。
- 两个加法都存在一个恒等元素 O。
- 存在加法逆。
- 标量乘法是加法的、分配的和关联的。
请注意,在工程和物理中,矢量空间和线性空间是同义词。有关属性的更好说明,请参阅此链接。
请注意,字段是定义了 +、* 的代数结构。
3.1 赋范线性空间
规范 ||.||线性空间 V 是一个函数,它将集合的元素映射到具有以下属性的实数:
其中 x 是 V 的一个元素。配备范数的线性空间称为范数线性空间。由于函数 ||x-y||满足度量的属性,它是规范线性空间的自然度量。也就是说,规范线性空间始终是度量空间。当然,其他指标也可能是可能的。
范数是一种量级。
3.2 巴纳赫空间
Banach 空间(发音为[ˈbanax])是一个完全 赋范向量空间。因此,Banach 空间是一个向量空间,其度量允许计算向量长度和向量之间的距离,并且在向量的柯西序列始终收敛到空间内 明确定义的极限的意义上是完整的。 巴纳赫空间以波兰数学家斯特凡·巴纳赫 (Stefan Banach)的名字命名
如果度量 || 的范数线性空间 (X, ||.||) 是完备的||x-y||,则称为 Banach 空间。在这里,赋范的线性空间和巴纳赫空间是一个概念的两个名称。
现在,我们可以定义希尔伯特空间。
四、内积空间
给定线性空间 X,内积 <x,y> 是具有以下属性的运算:
其中 x、y 和 z 是 X 的元素。具有定义内积的线性空间称为内积空间。请注意,内部产品空间的可能规范是:
因此,每个内积空间也是一个规范线性空间。
五、希尔伯特空间
下标完备的内积空间:
被称为希尔伯特空间。
希尔伯特空间是距离空间、范数空间(巴纳赫)的推广,其最大的特点是,可以是无限维度的正交空间,因此,引出一个问题,是否任意两个向量内积必然在距离空间内部,答案是:否。以下举例说明:
对于无限维度的单位向量,它的内积是:
这等于说:无限维空间的内积不一定存在,也就是不完备。
而对于向量,它的内积是:
结论:对于无限维向量,要想存在内积,必须是:
1)该向量必须是柯西序列。
2)该向量的自身内积必须收敛。
这样的距离空间就是希尔伯特空间。
在数学里,希尔伯特空间(英语:Hilbert space)即完备的内积空间,也就是一个带有内积的完备向量空间。内积的构造推广了欧几里得空间的距离和角的概念;完备则确保了其上所有的柯西序列会收敛到此空间里的一点,从而微积分中的许多概念都可以推广到希尔伯特空间中。
希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。另外希尔伯特空间也是量子力学的重要数学基础之一。