Pytest之mark.parametrize详解

pytest.mark.parametrizepytest 框架中一个非常强大的功能,用于对测试函数进行参数化。通过参数化,可以用不同的输入数据多次运行同一个测试函数,从而减少代码重复并提高测试覆盖率。

1. 基本用法

pytest.mark.parametrize 的基本语法如下:

import pytest

@pytest.mark.parametrize("input, expected", [
    (1, 2),
    (2, 4),
    (3, 6),
])
def test_multiply_by_two(input, expected):
    assert input * 2 == expected

在这个例子中,test_multiply_by_two 测试函数会被运行三次,每次使用不同的 inputexpected 值。

2. 参数详解

  • 第一个参数:一个字符串,表示测试函数的参数名称,多个参数用逗号分隔。
  • 第二个参数:一个可迭代对象(通常是列表或元组),包含多组参数值。每组参数值可以是元组、列表或字典。

3. 多参数参数化

你可以同时参数化多个参数:

@pytest.mark.parametrize("a, b, expected", [
    (1, 2, 3),
    (4, 5, 9),
    (10, 20
### Pytest Fixture 的详细用法 Pytest 提供了 `@pytest.fixture` 装饰器用于定义测试夹具 (fixture),这些夹具可以在多个测试函数之间共享状态并执行设置和清理操作。通过这种方式,可以简化测试代码编写过程,并提高可维护性和重用性。 #### 定义 Fixture 函数 要创建一个 fixture,只需简单地使用 `@pytest.fixture` 来装饰目标函数即可: ```python import pytest @pytest.fixture def sample_fixture(): """这是一个简单的 fixture 示例""" data = {"key": "value"} yield data # 返回数据给测试函数,在此之后的语句会在所有依赖它的测试结束后运行 print("Teardown actions") # 清理工作 ``` 上述例子展示了如何定义带有上下文管理功能的 fixture;当关联的测试完成时会自动触发 teardown 部分中的逻辑[^1]。 #### 使用 Fixture 一旦定义好了 fixture 后,则可以通过参数注入的方式将其传递给任何需要该资源的测试方法中去: ```python def test_with_sample(sample_fixture): assert isinstance(sample_fixture, dict) assert 'key' in sample_fixture ``` 这里演示了一个基本的例子来展示怎样利用之前声明过的 fixture 实现自动化验证流程[^2]。 对于更复杂的场景比如浏览器驱动实例初始化等也可以采用相同的方法处理不同类型的环境配置需求。 #### Scope 属性控制作用范围 除了默认的作用域外(即每次遇到请求都会重新构建一次),还可以指定其他级别的 scope 值以适应特定的应用程序结构或者性能考虑因素: - **function**: 默认选项,默认情况下每个测试都将获得独立的新鲜副本; - **class**: 对于整个类内的所有成员有效; - **module**: 整个模块级别共用同一个 instance; - **session**: 测试会话期间唯一存在. 例如下面这段代码设置了 session 级别的数据库连接池作为全局共享对象提供给各个地方调用而无需重复建立新链接: ```python @pytest.fixture(scope="session") def db_connection(): connection = establish_db_connection() try: yield connection finally: close_db_connection(connection) ``` #### Autouse 自动应用 Fixtures 如果希望某些 fixtures 不必显式传参就能被激活的话,那么就可以开启 autouse 特性开关让其自动生效而不受位置影响: ```python @pytest.fixture(autouse=True) def prepare_environment(): setup_env() # 设置环境变量或其他准备工作 yield cleanup_env() # 结束后的恢复措施 ``` 这种机制非常适合用来做统一的日志记录、临时文件目录准备等工作项,从而减少冗余代码量的同时也增强了灵活性。 #### Parametrizing Fixtures 参数化 Fixtures 有时可能还需要针对同一套业务逻辑的不同输入条件来进行多轮次迭代式的考察分析,这时便可以用到 parametrize 功能配合 fixtures 达成目的: ```python import pytest @pytest.fixture(params=[1, 2, 3]) def number(request): return request.param def test_numbers(number): assert isinstance(number, int), f"{number} is not an integer" ``` 在这个案例里我们为名为 `number` 的 fixture 设定了三个整数值作为候选集,每当执行对应的单元检验环节就会依次取出每一个元素赋值给它进而形成一组完整的组合拳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fro.Heart

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值