第6章-1 输入列表,求列表元素和(eval输入应用) (10分)【Python版本】

本文介绍了一种简洁的方法,使用Python内置函数sum()和eval(),在一行为输入的列表计算所有元素的总和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在一行中输入列表,输出列表元素的和。

输入格式:

一行中输入列表。

输出格式:

在一行中输出列表元素的和。

输入样例:

[3,8,-5]

输入样例:

6

【Python参考代码】

#By yangbo 2020.08.09
num = eval(input())
print(sum(num))

, 512) resnet.eval() # 对交通标志进行类的卷积神经网络模型 class TrafficSignClassifier可以使用Python内置函数`enumerate()`结合列表推导式来查询列表中所有的1及其索引。以下是(torch.nn.Module): def __init__(self): super(TrafficSignClassifier, self).__init__() self.conv1 =一个示例代码: ```python my_list = [0, 1, 0, 1, 1, 0, torch.nn.Conv2d(2048, 64, 3, padding=1) self.conv2 = torch.nn.Conv2d 1] # 使用列表推导式enumerate()函数查询所有的1及其索引 result = [(index, value)(64, 32, 3, padding=1) self.fc = torch.nn.Linear(32 * 7 * 7, for index, value in enumerate(my_list) if value == 1] # 输出结果 print(result) ``` 在上述代码中 7) def forward(self, x): x = torch.nn.functional.relu(self.conv1(x)) x = torch.nn.functional.max,首先定义了一个列表`my_list`,其中包含了一些01。然后使用列表推导式_pool2d(x, 2) x = torch.nn.functional.relu(self.conv2(x)) x = torch.nn.functional.max_pool2`enumerate()`函数查询所有的1及其索引,最后将结果存储在`result`变量中。列表d(x, 2) x = x.view(x.size()[0], -1) x = self.fc(x) return x推导式中的`if`语句用于筛选只有值为1元素。最后使用`print()` # 加载交通标志类卷积神经网络模型 classifier = TrafficSignClassifier() classifier.load_state_dict(torch函数输出结果。 输出结果为:`[(1, 1), (3, 1), (4, 1), (6.load('classifier.pth')) # 对一张图片进行交通标志检测类 def detect_traffic_sign(image_path): , 1)]`,其中每个元素是一个元组,第一个元素1的索引,第二个元素1的值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yangbocsu

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值