作者:CSDN @ _养乐多_
本文记录了在 Google Earth Engine(GEE)平台中,计算机器学习分类算法最优参数的代码,其中包括最优单一参数和最优参数组合。使用的最优参数计算方法是网格搜索法(Grid Search),GEE 平台上并没有现成的网格搜索法 API,因此,本文在 GEE 上手动实现了网格搜索法以求最优参数。该方法可以用到 GEE 平台上所有机器学习方法的参数优化中,比如随机森林、支持矢量机等。
本文以 kNN 最近邻分类方法为例,分别计算了在不同最近邻数量、搜索方法、距离度量方法和不同参数组合下的分类精度。最后将精度绘制成了一个散点图,散点图如下所示,其中横轴代表不同参数的组合,纵轴代表分类精度,精度最高的点的横坐标代表最优参数组合。下图中,可以看到最优的参数组合是(最近邻数量15、搜索方法COVER_TREE、距离度量方法MANHATTAN),当参数组合是这种方式的时候,kNN分类的精度最高。
一、网格搜索(Grid Search)方法
在本文的代码中,虽然并没有直接使用网格搜索(Grid Search)方法,但通过嵌套的循环结构,遍历了不同的参数组合。这个过程可以看作是一种手动实现的网格搜索。