GEE:使用网格搜索法(Grid Search)求机器学习算法的最优参数或者参数组合

本文介绍了如何在Google Earth Engine (GEE)上利用手动实现的网格搜索法找到机器学习算法(如kNN)的最优参数。通过遍历不同参数组合,如最近邻数量、搜索方法和距离度量,来评估分类精度,从而确定最佳参数。文中以kNN为例,展示了最优参数组合(最近邻数量15,搜索方法COVER_TREE,距离度量方法MANHATTAN)带来的最高分类精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:CSDN @ _养乐多_

本文记录了在 Google Earth Engine(GEE)平台中,计算机器学习分类算法最优参数的代码,其中包括最优单一参数和最优参数组合。使用的最优参数计算方法是网格搜索法(Grid Search),GEE 平台上并没有现成的网格搜索法 API,因此,本文在 GEE 上手动实现了网格搜索法以求最优参数。该方法可以用到 GEE 平台上所有机器学习方法的参数优化中,比如随机森林、支持矢量机等。

本文以 kNN 最近邻分类方法为例,分别计算了在不同最近邻数量、搜索方法、距离度量方法和不同参数组合下的分类精度。最后将精度绘制成了一个散点图,散点图如下所示,其中横轴代表不同参数的组合,纵轴代表分类精度,精度最高的点的横坐标代表最优参数组合。下图中,可以看到最优的参数组合是(最近邻数量15、搜索方法COVER_TREE、距离度量方法MANHATTAN),当参数组合是这种方式的时候,kNN分类的精度最高。

在这里插入图片描述



一、网格搜索(Grid Search)方法

在本文的代码中,虽然并没有直接使用网格搜索(Grid Search)方法,但通过嵌套的循环结构,遍历了不同的参数组合。这个过程可以看作是一种手动实现的网格搜索。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值