
Fit the Elephant in a Box - Towards IP Lookup at
On-chip Memory Access Speed

Tong Yang∗, Alex X. Liu §, Qiaobin Fu†, Dongsheng Yang∗, Steve Uhlig¶, Xiaoming Li∗.
∗ Department of Computer Secience, Peking University, China
† Department of Computer Secience, Boston University, USA

§ Department of Computer Science and Engineering, Michigan State University
¶ Queen Mary, University of London, UK

Abstract—Fitting large and ever increasing routing tables in
small on-chip memory is just like fitting an elephant in a box,
which has been considered as impossible. In this paper, we
propose the data structure of two-Dimensional Division Bloom
Filter (D2BF) that can compactly encode almost all the needed
information for performing IP lookup from a FIB in small on-
chip memory. With pipelining, we further achieve the throughput
of one packet per on-chip memory access.

I. INTRODUCTION

The key challenge of IP lookup is to fit the “elephant”
in a “box” - the elephant is the large, yet ever increasing,
Forwarding Information Base (FIB, i.e., the IP lookup table),
and the box is the small on-chip memory. FIB sizes have been
rapidly growing by 15% every year [1], exceeding 600,000
prefixes in 2016 [2]. On-chip memory, such as L2, L3 caches
on CPU platforms or Block RAM on FPGA platforms, is
inherently small in size (in the scale of tens of Mb) and
expensive in price. Although small in size, on-chip memory
is best for IP lookup because it is tens of times faster than
off-chip memory [3].

Although IP lookup has long been a core networking
problem and many types of schemes have been proposed
(such as TCAM-based, GPU-based, trie-based, and hash-based
schemes), the goal of fitting a large FIB in the on-chip
memory and therefore accomplishing IP lookup in the on-
chip memory has remained quite distant [4]–[7]. Bloom Filters
(in short BFs) [8], as space-efficient data structures, have the
potential to compactly encode the FIB information needed
for IP lookups in the on-chip memory. Dharmapurikar et al.
proposed to use Bloom filters in the on-chip memory to encode
a FIB [9]; however, their Bloom filters can only be used to
find the length of the longest matching prefix in the FIB for
a given IP address. After querying the Bloom filters in the
on-chip memory, their scheme must access off-chip memory
to find the next-hop of the given IP address.

Inspired by this line of thought, in this paper, we propose
two-Dimensional Division Bloom Filters (DDBF, in short
D2BF). Contrary to Dharmapurikar et al.’s scheme, D2BF can
be used to directly find the next-hop from a simultaneous query
of many Bloom filters. The key insight behind D2BF is that
after the Bloom filter query, a single Bloom filter reports true,
which points to a single next-hop. Therefore, with D2BF, we

do not need to explicitly know the longest matching prefix and
therefore do not need to store it on-chip, saving the precious
on-chip memory. Furthermore, using the techniques from [10],
D2BF can achieve one on-chip memory access per lookup, and
almost no off-chip memory access.

II. D2BF
A. Set Lookup Algorithm

Given a FIB F, we build a trie T, then carry out leaf pushing
to eliminate overlaps, followed by level pushing to generate a
trie with limited number of levels: l1, l2, ..., lL. In this way, we
divide the FIB into L ∗H sets Si,j(i = l1, l2, ..., lL, 0 < j 6
H), where i represents the level (prefix length), j represents
the next-hop, L represents the number of levels after pushing,
and H is the number of next-hops. After this two-dimensional
division, the prefixes are divided into L*H sets. Obviously, as
L increases, the total number of prefixes decreases and the
number of sets increases.

Here we give a formal description of Set Lookup Algorith-
m: After the two-dimensional division, there are L*H sets:
Si,j(i = l1, l2, ..., lL, 0 < j 6 H). Given an IP address
a, we check whether |a| >> (32 − l1) is an element of
Sl1,j (0 < j 6 H), where |a| represents the integer value
of a and >> means ”right SHIFT”. At the same time, we
check whether |a| >> (32 − l2) ∈ Sl2,j (0 < j 6 H), ...,
|a| >> (32 − lL) ∈ SlL,j (0 < j 6 H). After these L ∗ H
checks, only one set reports true, and the next-hop is the hop
ID of the matched set. h(S) denotes the hop ID of set S.
B. Choosing Optimal Number of Levels

One crucial design choice is the number of levels L, as
it impacts the total number of prefixes. Values of L of 3
or 4 typically lead to a minimal number of prefixes. When
L is 3 and 4, there are C3

32 = 4960 and C4
32 = 35960

possible combinations of levels, respectively. For IPv4 FIBs,
most prefixes are at level 24, making it an obvious level
choice. Also, 32 should be chosen as another level too. As
there are few prefixes of lengths between 25 and 31, these
levels should not be chosen. Finally, no prefixes currently exist
with length between 1 and 7, so these levels should not be
considered neither. Therefore, as levels 24 and 32 should be
chosen, we are left to decide which levels between 8 and 23
should be chosen. In other words, we are left with C1

16 = 16
combinations when L = 3, and C2

16 = 120 combinations when

1

IP Address

2

...

18 18, 1 18, 2 ... 18,H

22, 1 22, 2 ... 22,H

24, 1 24, 2 ... 24,H

32, 1 32, 2 ... 32,H

22

24

32

32

24

22

18

...
...

...

Port 1 Port 2 Port H

False

positive?
No

Yes

White List match
fin

ish

...

18, 1 18, 2 ... 18,H

32, 1 32, 2 ... 32,H

...

...

...

...

Bloom

filters

Counting

BFs

On-chip

Off-chip

Update

message insertion

If a counter decreases to 0, update

the corresponding on-chip filter

preprocessing

deletion

No match

study
insertion

Off-chip

lookup tables

Fig. 1. D2BF architecture.

L = 4. Experimental results on 13 FIBs show that: 1) when
L = 4, the four levels of 18, 22, 24, and 32 achieve the
minimum overall number of prefixes in most cases, and 2)
when L = 3, the three levels of 20, 24, 32 are the optimal
levels.

Port grouping

Level 18

Routing
Table

Routing
Table

Level-
pushing

Level 21

Level 24

Level 32

1/18 2/18 ... p/18

1/21 2/21 ... p/21

1/24 2/24 ... p/24

1/32 2/32 ... p/32

Port 1 Port 2 Port p...

Fig. 2. The construction of TDDBF.

C. Using Bloom Filters
The most important operation in the set lookup algorithm

is to judge whether an element belongs to a given set. To
achieve this, a naive solution is to traverse the set, with time
complexity O(n), where n is the number of elements in the
set. Another solution is to construct a hash table, making the
average time complexity O(1). However, with the hash table:
1) the worst-case performance cannot be bounded because of
hash collisions and; 2) the memory requirements are too large
to fit in the on-chip memory if the hash collision probability is
to be kept low. Note that perfect hashes cannot be used because
of the frequent updates to be made to the FIB. Therefore, in
this paper, we propose the use of Bloom filters for the set
lookup.
Two-Dimensional Division Bloom Filters: As illustrated in
Figure 1, our algorithm works as follows. First, we first build
a trie given a FIB. Then we carry out leaf-pushing and level-
pushing to produce a trie which has only four levels: 18, 22,

24, and 32 (see Figure 2). We call this trie 4-level trie in
this paper. Second, we build 4 ∗ H BFs, named BFi,j(i =
18, 22, 24, 32; j = 1, 2, 3..., H), with all 0s in all BFs. Third,
we traverse this 4-level trie, for each prefix p/l(p) : h(p),
where l(p) is p’s length (level), and h(p) is p’s next-hop. We
insert prefix p into BFl(p),h(p), and the construction of the
lookup table is complete. The lookup of D2BF is almost the
same as the set lookup algorithm. The only difference is that
given an IP address a, we perform the BF query to check
whether a >> (32 − i) ∈ BFi,j . Assuming that the number
of next-hops H does not significantly increase, the lookup
speed of the D2BF algorithm, determined by the speed of one
query in BF, can be held constant, irrespective of the growth
in the routing tables.

ACKNOWLEDGMENT

This work is partially supported by National Basic Re-
search Program of China (2014CB340400), Primary Research
& Development Plan of China (2016YFB1000300), NSFC
(61672061, 61472184, and 61321491), NSF (CNS-1318563,
CNS-1524698, and CNS-1421407), and the Jiangsu High-level
Innovation and Entrepreneurship (Shuangchuang) Program.

REFERENCES

[1] X. Meng, Z. Xu, and et al., “IPv4 address allocation and the bgp routing
table evolution,” Proc. ACM SIGCOMM CCR, 2005.

[2] “AS 6447 fib,” http://bgp.potaroo.net/as6447/.
[3] W. Feng and H. Mounir, “Matching the speed gap between sram and

dram,” in Proc. IEEE HSPR, 2008, pp. 104–109.
[4] T. Yang, Z. Mi, R. Duan, X. Guo, J. Lu, S. Zhang, X. Sun, and

B. Liu, “An ultra-fast universal incremental update algorithm for trie-
based routing lookup,” in Proc. IEEE/ACM ICNP, 2012, pp. 1–10.

[5] T. Yang, G. xie, Y. Li, and et al., “Guarantee IP lookup performance
with fib explosion,” in Proc. ACM SIGCOMM, 2014.

[6] Z. Mi, T. Yang, J. Lu, H. Wu, Y. Wang, T. Pan, H. Song, and B. Liu,
“Loop: Layer-based overlay and optimized polymerization for multiple
virtual tables,” in Proc. ACM/IEEE ICNP, 2013.

[7] T. Yang, R. Duan, and et al., “Clue: Achieving fast update over
compressed table for parallel lookup with reduced dynamic redundancy,”
in Proc. IEEE ICDCS, 2012.

[8] T. Yang, A. X. Liu, and et al., “A shifting bloom filter framework for
set queries,” Proceedings of the Vldb Endowment, 2016.

[9] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix
matching using bloom filters,” in Proc. ACM SIGCOMM, 2003.

[10] Y. Qiao, T. Li, and S. Chen, “One memory access bloom filters and
their generalization,” in Proc. IEEE INFOCOM, 2011, pp. 1745–1753.

http://bgp.potaroo.net/as6447/

	Introduction
	D2BF
	Set Lookup Algorithm
	Choosing Optimal Number of Levels
	Using Bloom Filters

	References

