HyperSight: Towards Scalable, High-coverage, and
Dynamic Network Monitoring Queries

Yu Zhou, Jun Bi, Senior Member, IEEE, Tong Yang, Member, IEEE, Kai Gao, Jiamin Cao, Dai Zhang,
Yangyang Wang, Cheng Zhang

Abstract—Performing fine-grained and real-time network
monitoring is the core logic of various data center operation
applications, such as traffic engineering, network troubleshooting,
and anomaly detecting. However, the state-of-the-art network
monitoring solutions either fall short of completely detecting
all network incidents (i.e., congestion), yielding limited moni-
toring coverage, or introduce large overheads, yielding limited
scalability. In this paper, we present HyperSight, a network
traffic monitor with both high coverage and low overheads.
The key idea of HyperSight is to monitor networks at the
behavior level via tracking packet behavior changes. HyperSight
proposes three designs for behavior-level monitoring. First, to fa-
cilitate expressing various network monitoring tasks, HyperSight
presents a declarative query language based on the streaming
processing model. Second, HyperSight proposes Bloom Filter
Queue (BFQ), a memory-efficient algorithm to empower in-
network capability for monitoring packet behavior changes. BFQ
can be implemented on commodity programmable switches.
Third, to support dynamic deployment and execution of packet
behavior change monitoring tasks without interrupting on-service
switches, HyperSight proposes virtual BFQ to support dynamic
query compilation. We build a prototype of HyperSight and
deploy it on commodity programmable switches. Evaluation
results show that HyperSight supports a wide range of network
event queries and can monitor over 99% packet behavior changes
while keeping remarkably low overheads.

Index Terms—Network monitoring, programmable switch,
packet behavior

I. INTRODUCTION

Network monitoring is critical for data center network
management. In particular, the management tasks, such as
traffic engineering [2—6], troubleshooting [7-10], attack de-
tection [11], and network planning [12, 13] require always-
on, fine-grained, and real-time visibility of network incidents,
such as congestion and throughput degradation. To obtain a

Yu Zhou, Jiamin Cao, and Dai Zhang are with Institute for Network
Sciences and Cyberspace, Tsinghua University, Department of Computer
Science, Tsinghua University, and Beijing National Research Center for
Information Science and Technology (e-mail: {y-zhoul6, c¢jm18, zhangd15,
zhang-cheng13} @mails.tsinghua.edu.cn).

Jun Bi and Yangyang Wang are with Institute for Network Sciences
and Cyberspace, Tsinghua University, Department of Computer Science,
Tsinghua University, and Beijing National Research Center for Information
Science and Technology, and CERNET Network Center (e-mail: {junbi,
wangyy } @cernet.edu.cn).

Tong Yang is with the Department of Computer and Science, Peking
University, China (e-mail: yangtongemail @gmail.com).

Kai Gao is with the College of Cybersecurity, Sichuan University (e-mail:
kaigao@scu.edu.cn).

Cheng Zhang is
iczhang @ gmail.com)

The conference version of this paper was presented at the IEEE ICNP 2018,
Cambridge, UK, September 17, 2018 [1].

with Huawei Technologies Co., Ltd. (toer-

A rin

I
e [OO OO O
O [

Legend

ing N

4\ Monitoring
messages

1777} Packets with
L.} 1usdelay

{777 Packets with
L__} 100us delay

| Packets with
-1 delay changes

T
AI:‘!OM{-IGI{EI |:| |:| i::i
|

ing 1 1

Behavior-level
Monitoring

0 DEEs

Congestion

Figure 1. Behavior-level monitoring vs. packet-level and flow-level
monitoring. Packet-level monitoring provides high-coverage monitoring
but is limited in scalability. Flow-level monitoring yields good scalability
but cannot guarantee monitoring coverage. Behavior-level monitoring can
reconcile both the monitoring coverage and scalability.

completed view of network status, network operators should
be able to provide high-coverage network monitoring. Fur-
thermore, as data center networks expand rapidly in scale,
speed, and traffic volume, operators should also guarantee that
network monitoring systems can scale with low overheads.

There have been many off-the-shelf solutions for net-
work monitoring in the literature. Based on the monitoring
granularity, we categorize them into two types. First, the
packet-level monitoring solutions [7-9, 14] display how each
packet traverses the networks, but they have to inspect all
packets, which introduces unacceptable overheads and comes
with significantly constrained scalability. Second, the flow-
level monitoring solutions present flow-level information via
sampling [15-17], aggregation [18-21], or sketching [22-
24]. However, the coarse-grained flow-level information might
miss some subtle network incidents, compromising monitoring
coverage. For example, sFlow [16] performs sampling over
packets and potentially misses congestion events experienced
by unsampled packets. In summary, packet-level monitoring
and flow-level monitoring fail in either scalability or coverage.

Given the limitations of existing solutions, we argue for a
shift of network monitoring granularity to the behavior level:
only monitor the packets that encounter behavior changes.
Packet behaviors can include path, throughput, delay, and
field modification when packets are forwarded in networks.
Behavior changes denote that the behavior of a packet differs
from the behaviors of the previous packets in the same flow.
Figure 1 shows a comparison of the three monitoring granu-
larities. Furthermore, behavior-level monitoring is motivated
by the following observations. First, network incidents are
always accompanied by packet behavior changes. For example,
congestion incurs latency inflation. Second, the packets experi-
encing behavior changes only take up a small portion of overall
traffic (see §VII-B). Driven by the above observations, we
propose to monitor all packet behavior changes on switches
to provide visibility of network incidents with both high
scalability and high coverage.

In this paper, we present HyperSight, a practical system for
monitoring packet behavior changes. However, there are three
challenges in designing HyperSight.

Lack of a convenient way to express various network
monitoring tasks. There are various network monitoring
tasks, such as load imbalance profiling, congestion detection,
and flow path monitoring. Operators need a convenient way to
express the tasks they intend to deploy in networks. However,
no such network programming language that can specify
various monitoring tasks over packet behavior changes. To
address this issue, we propose a high-level Packet Behavior
Query Language (PBQL). PBQL introduces stream processing
into packet behavior change monitoring and abstracts packet
behaviors as dynamic tables. Then, in PBQL, operators can use
sliding-window-based primitives, including distinct and
duplicate, to extract packet behavior changes.

Limited switch telemetry capability for monitoring packet
behavior changes. Although many switch telemetry meth-
ods come into being with the flourish of programmable
switches [25] and P4 [26], none of them can be directly
applied for monitoring packet behavior changes. On the one
hand, some telemetry methods can record packet behaviors of
a small portion of flows, which is far from satisfactory for
high-coverage monitoring. On the other hand, some telemetry
methods record aggregated states (e.g., average delay) of
all flows, which are always helpless for monitoring packet
behavior changes. Packet behavior change monitoring requires
exact states of all flow and can exhaust limited data plane
memory due to massive traffic. To address this issue, we
propose Bloom Filter Queue (BFQ), a memory-efficient al-
gorithm for recording packet behaviors on data planes. BFQ
can identify packet behavior changes by finding distinct or
duplicate behaviors among recently-arrived packets. Moreover,
BFQ runs in the data plane entirely and can be deployed into
P4-programmable switches, e.g., Tofino [27].

Incapable of implementing dynamic monitoring tasks with-
out interrupting running switches. As network condition
changes over time, network operators or applications need
to change monitoring tasks running in switches at runtime.
However, updating monitoring tasks needs to change P4
programs, which will interrupt on-service switches. As in-
terrupting switches introduces service pause in milliseconds
and is intolerable for network operation, supporting dynamic
deployment and execution of monitoring tasks is of great
importance. However, none of existing monitoring solutions in
programmable switches supports dynamic queries. Borrowing
from the idea of virtual programmable data plane [28, 29], we
propose virtual BFQ (vBFQ) and make BFQ support dynamic
reconfiguration. Operators can dynamically compile network
monitoring tasks into running switches with no interruption.
In this paper, we make the following contributions:

« We propose HyperSight which exploits packet behavior
changes to monitor network incidents while achieving
both high coverage and high scalability.

« We provide PBQL, a declarative query language for
operators to specify network monitoring intents. PBQL
introduces a simple programming model for network

monitoring based on stream processing. (§IV)

o We propose BFQ, a new telemetry algorithm compati-
ble with commodity programmable switches to support
packet behavior change monitoring. (§V)

o We propose VBFQ to support dynamic compilation of
network event queries, enabling update of monitoring
tasks without switch termination. (§VI)

« We implement a prototype of HyperSight atop
Tofino [27] and SmartNIC [30]. The open-source
code of HyperSight is at [31]. Evaluation results indicate
that HyperSight supports a wide range of network
monitoring queries and can monitor over 99% packet
behavior changes while reducing overheads by two
orders of magnitude. (§VII)

II. MOTIVATION AND RELATED WORK
A. Motivation Cases

In this section, we outline four use cases for always-on
monitoring of packet behavior changes.

Network-wide per-flow delay change. HyperSight discretizes
delay for every flow and reports all discretized delay changes.
Monitoring flow delay enables operators to identify the current
network congestion status, as network congestion is the main
deciding factor for packet forwarding delay in data center
networks. Combining delay of different flows, network op-
erators can easily locate hot congestion spots (i.e., caused by
incast), which helps evaluate the effectiveness of congestion
control algorithms. Furthermore, monitoring flow delay can
help operators debug whether application glitch should be
attributed to networks. The state-of-the-art solutions can easily
monitor the delay of a specific path (e.g., Pingmesh [10])
or a specific flow (e.g., EverFlow [7]). However, performing
always-on network-wide delay monitoring is non-trivial for the
state of the arts which potentially introduces large overheads.
Network-wide per-flow throughput change. HyperSight can
report changes that happen to the port-level throughput of
all flows. Load imbalance introduces limited utilization of
network fabric and impedes the performance of normal traffic.
Measuring throughput changes of all links in a continuous
manner enables operators to understand whether the load
balance scheme (e.g., ECMP) works normally. Furthermore,
knowing which flows traverse highly-loaded links is essential
for traffic engineering.

Network-wide per-flow packet retransmission. HyperSight
can monitor packet retransmission via checking whether du-
plicate TCP packets with the same five-tuples and sequence
number exist. On the one hand, in-network packet retrans-
mission detection helps identify random packet loss, which
enables operators to take timely mitigation operations such
as device rebooting. On the other hand, continuous packet
retransmission reveals severe congestion or link failures, call-
ing for traffic redirecting. On-data-plane packet retransmission
detection paves the path to real-time traffic redirecting and
high-quality network services.

Denial-of-service attacks. Some denial-of-service (DoS) at-
tacks lead to a large amount of the same type of traffic
to the same destination to exhaust victims’ resources. Thus,

attack packets might have the same destination IP addresses
and packet patterns, which distinguish them from regular
packets. For example, DNS reflection DoS attacks could result
in massive DNS response packets to victims simultaneously,
while in ordinary cases, victims only have a small number of
response packets. Given the above nature of DoS attack traffic,
HyperSight can check the duplicate packets among recently-
arrived packets. When there is a lot of duplicate packets
from too many different source IP addresses to the same
destination address, HyperSight can reasonably identify that
the network undergoes DoS attacks. Furthermore, checking
duplicate packets empowers HyperSight more generality to
monitor various DoS attacks.

Existing solutions can support the above cases for a specific
flow or a specific device. However, when applying existing
solutions to check packet behaviors for all flows continuously,
they inevitably introduce significant bandwidth overheads and
processing overheads, posing limited feasibility. Compared
to the existing solutions, HyperSight can provide always-
on high-coverage network monitoring services. Meanwhile,
HyperSight significantly reduces the monitoring overheads
and can scale to large networks with high-volume traffic.

B. Related Work

Network monitoring has long been a challenging task
drawing intensive researching interests. First, some tools can
provide fine-grained packet-level monitoring. NetSight [9]
will generate packet records (called postcards), but NetSight
introduces high costs, because it needs to generate postcards
for each packet. EverFlow [7] also generate postcards but
employs match-mirror and proactive test packet injection to
reduce monitoring overheads. However, if EverFlow wants to
monitor all packet behaviors, it has to generate postcards for all
packets and encounter the same scalability issue of NetSight.

Second, some solutions can provide aggregated flow-level
monitoring statistics. sFlow [16] and NetFlow [15] perform
sampling over packets. FlowRadar [21], LossRadar [20], and
TurboFlow [18] can provide flow-level counters, but they
cannot provide network incident information. HashPipe [32],
Elastic Sketch [22], SketchLearn [23], OpenSketch [24], and
UnivMon [33] employ sketches to monitor heavy hitters,
flow size distribution, traffic change detection, and so on.
Sonata [34] and Marple [35] also provide language-directed
network monitoring. However, Sonata and Marple have to
interrupt on-service switches when updating their queries in
switches, falling short of supporting dynamic queries.

ITI. OVERVIEW OF HyperSight

In this section, we will illustrate how HyperSight imple-
ments queries and how HyperSight monitors packet behavior
changes (PBC).

A. Workflow and Dataflow of HyperSight

As shown in Figure 2, HyperSight is composed of four
layers. The first layer consists of queries from various ap-
plications, and the queries can be specified with PBQL. The

Top-down Workflow Down-top Dataflow

HyperSight T Query 1 Query | I Query |
Queries | _1_1| J

HyperSight T Query |1 Query |1 Query |
Queries | _1_

[Queries

| Centralized Processor I | -
p— — Centralized Processor
[Queries

Dispatch p— S——
¥ Switch-level PBC

| Switch CPU I
||
t

| Switch CPU

[PBCwith FNs f

- - :
wras] [asic l:| :
[Pa&kszﬂshaw‘ws’/hl

Figure 2. Top-down workflow and down-top dataflow of HyperSight.
Solid squares denote packets experiencing behavior changes, while hollow
squares denote those that do not experience behavior changes.

Compile

[asic

pPackets 0 OO OO O OO

second layer is a centralized processor which collects data
from all switches and pushes data to queries. The third layer
consists of CPUs of all switches and takes responsibility
for cleaning raw data from programmable ASIC and reports
data to the centralized processor. The fourth layer consists of
ASICs which collect PBC at line rate. Next, we will introduce
the workflow of HyperSight and how monitoring data of
HyperSight moves among the four layers, named dataflow.

Top-down workflow of HyperSight. As shown in Figure 2,
the workflow of HyperSight starts from the first layer and ends
at the fourth layer, ie., in a top-down manner. HyperSight
could execute multiple queries simultaneously in the same
network, and network operators could specify queries with
PBQL. Then, the centralized processor dispatches all queries
to switches. Next, the switch CPU compiles queries to config-
urations (i.e., table entries) of the P4 program, and the entries
can be dynamically installed into ASIC. Correspondingly,
HyperSight will instantiate a vVBFQ for each query. On the
one hand, the top-down workflow supplies language-directed
telemetry [35] and enables a flexible way to express various
network event monitoring tasks. On the other hand, the top-
down workflow prevents collecting redundant data that is
undesired by network operations and enhances the overall
scalability of HyperSight.

Down-top dataflow of HyperSight. Before being provisioned
to upper-layer applications, PBC data will flow through ASIC,
switch CPU, and the centralized processor sequentially, i.e., in
a down-top manner. First, vBFQ in switch ASIC reports PBC
with false negatives (FN). Then, switch CPU can faithfully
remove FNs in PBCs and report switch-level PBCs. Last, the
centralized processor merges the data from different switches
into the same data store and pushes the data to application
queries. Such down-top dataflow will reduce the volume of
data layer by layer. Leveraging computing power on switch
ASIC, switch CPU, and the centralized processor, the dataflow
can achieve high PBC coverage while keeping overheads of
collecting and transmitting data as low as possible.

B. Architecture of HyperSight

Figure 3 demonstrates the HyperSight architecture which
comprises two parts. First, the centralized processor provides
query interfaces for various applications and collects data
from all switches. Second, switches supporting HyperSight
provide high-coverage and scalable PBC monitoring. Hyper-
Sight integrates the great programmability of switch CPU

Queries Switch-level PBC HyperSight Applications

Switch CPU

l Centralized Processor ‘

Table Entries

.iwitch-/evel PBC

{H _PCle DMA

[_> Generdte digest <_l

s o 01| 00 [egrerscfl 70,
PWith PANBrQ 2| PWitch-PANBra 4

Figure 3. Architecture of HyperSight.

Switch ASIC HyperSight

S3

HypersSight

Sz

i

and the high performance of switch ASIC. On the one hand,
HyperSight implements an efficient algorithm (BFQ) on ASIC
to get PBCs. On the other hand, the switch CPU performs the
complex logic of removing FNs and reports FN-free PBCs to
the centralized processor. Next, we will introduce the design
of switch CPU and switch ASIC.

Switch CPU. There are two functions in switch CPU. First,
switch CPU performs query compilation. HyperSight provides
a dynamic compiler for PBQL queries on PBC, and the
compiler will convert queries into P4 program configurations,
i.e., table entries. Then, the compiler invokes P4 runtime [36],
which is a south-bound protocol for controlling programmable
ASIC. §VI presents more details about query compilation.
In this manner, HyperSight supports hot recompilation and
reconfiguration of queries without switch service interruption.
Second, switch CPU performs PBC cleaning. As PBC reported
by switch ASIC could have FNs, PBC cleaning is required
to keep switch-level PBC redundancy-free and cut down the
overheads of reporting PBC. Polling PBCs form PCle DMA,
PBC cleaner records data in PBC data store. PBC cleaner
will check whether the reported data correctly identifies PBCs.
If there is no FN, PBC cleaner informs PBC reporter which
uploads PBCs to the processor.

Switch ASIC. vBFQ can reside at the end of ingress pipelines
or egress pipelines in switch ASIC, which is decided by
the monitored packet behaviors. For example, if a vBFQ is
deigned to monitor queuing delay which can only be observed
in egress pipelines, it must be placed in egress pipelines.
BFQ is a memory-efficient algorithm which inevitably comes
with errors (i.e., FNs). Specifically, BFQ might report some
packet behaviors that do not undergo changes. The insight
of HyperSight to handle FNs is to employ the processing
power of switch CPU. Whenever a BFQ finds a PBC, it will
invoke generate_digest which reports PBC to switch CPU via
PCle DMA. Evaluation results show that BFQ incurs minor
overheads on packet forwarding performance (§VII-D). In §V,
we will present the detailed design and analysis of BFQ.

IV. PACKET BEHAVIOR QUERY LANGUAGE

To provide a convenient way for network operators to
describe their intents on packet behavior change monitoring,
HyperSight provides a unified language, named packet behav-
ior language (PBQL). In this section, we will introduce the
programming model and the syntax of PBQL. Furthermore,
we will show the expressibility of PBQL via nine applications.

Root Dynamic Table of Original Packet Behavi © distinct Dynamic Table of Packet Congestion
SIP DIP PROTO SPORT DPORT SEQ Delay SIP DIP PROTO SPORT DPORT Delay
pkt, |ipy |ip, | TCP | py P2 1| 100us ipy |ip, | TCP | p, s Ims
pkty |ips |ip2 | TCP | ¢ 100 ips |ip, | TCP : Ims
pkts |ipy |ips | TCP | py I 2 | ims ips |ips | TCP P2 100
pkty |ips |ip, | TCP | p 2 1ms ip, lip, | TCP | py . 100us
pkty |ipy |ip, | TCP P1 P2 x Ims | duplicate | Dynamic Table of Packet Retransmission
phtnq|ivs |ip TCP) 100us SIP DIP PROTO SPORT DPORT SEQ
Pktyia|ipy |ipa | TCP | py s x| 100us L [1P [o0 [oo | x]

Figure 4. Dynamic tables of HyperSight. Green packets belong to flow
1, and red packets belong to flow 2.

Sliding Windows for

distinct/duplicate Dynamic Table

N , \

cO0eeooo0 -

Figure 5. distinct and duplicate based on sliding windows over
dynamic tables.

A. Programming Model

PBQL is inspired by distributed stream processing frame-
works, such as Flink [37]. These frameworks take a stream of
data records as input and make transformation on records to
build various applications. Correspondingly, packet behaviors
in switches can be abstracted as data records in stream
processing framework, and we use dynamic tables to denote
the stream of packet behavior records. In this part, we will
introduce HyperSight’s programming model, which includes
dynamic tables and the two operations over dynamic tables.

Dynamic table. In Figure 4, columns of a dynamic table
are the fields that can identify packet behaviors, such as
destination IP address (SIP) and delay (Delay), and see §1V-B
for a completed packet behavior field list. A dynamic table
has an infinite number of rows, each of which is a packet
behavior record. The left part of Figure 4 shows a root
dynamic table that stores original behaviors of each packet.
HyperSight generates a dynamic table for each query. In
essence, HyperSight transforms the root dynamic table to the
dynamic tables corresponding to different queries. Next, we
introduce two transformations to monitor PBCs.

Table 1
PACKET BEHAVIOR FIELDS.

Category Field Syntax Pipeline
Header Header Field header.field Ingress and Egress
Ingress Port in_port Ingress and Egress
Path Egress Port eg_port Ingress and Egress
Queue qid Ingress and Egress
Queue Length queue Egress
Performance Delay delay Egress
Throughput throughput Egress
Table II
PBQL SYNTAX.
f € Packet Behavior Fields
V. €N Field Value
vm eN Field Value Mask
W €N Window Size
F =f1f&VT™
T ="<’F {F}7”>7 | = Keys
C =< LfY > | Columns
DIS = distinct(C, T, W)
DUP = duplicate(C, T, W)
Q ==DUP|DIS| Q.0 Statement
OP = Q.start(V,V™{,V,V™}) | Q.end() Query Operations

Table IIT
EXAMPLE APPLICATIONS EXPRESSED BY THE PACKET BEHAVIOR QUERY LANGUAGE.

Applications Queries

Large flow Qi=distinct (<flow>, <flow, tcp.seq&O0xFFFF8000>).duplicate (<flow>, <flow>)
Flow path Or=distinct (<flow, sid, in_port, eg_port>, <flow, sid, in_port, eg_port>)

Loop freedom 03=0s.duplicate (¥, <flow, sid, eg_port>)

Flow delay change

Flow congestion

Throughput change

Packet retransmission

DNS reflection attack victims
Packet modification

Qu=distinct (<flow, sid, delay>, <flow,sid, delay&0xFC00 >)

QOs=distinct (*,<flow, sid, delay&0x8000>) .duplicate (*, <flow>)

Qe=duplicate (<ip.dip>, <ip.sip, ip.dip, throughput&0xFC00>) .distinct (¥, <ip.dip>)
Q7=duplicate (<flow,tcp.seq>,<flow,tcp.seq>). distinct (*,<flow>)

QOg=duplicate (<ip.dip>,<ip.sip,ip.dip,dns.address>) .distinct (*,<ip.dip>)
Qy=distinct (<flow,modified_fields>,<flow,modified_fields>)

Sliding-window-based distinct and duplicate. Intu-
itively, dynamic tables could support various streaming pro-
cessing primitives like map, reduce, and join. To monitor
packet behavior changes, HyperSight proposes two dedicated
primitives shown in Figure 4. First, distinct is the same
as the distinct primitive of standard SQL and extracts dis-
tinct elements in the dynamic table. Second, duplicate is
contrary to distinct and extracts the duplicate elements in
the dynamic table. However, as a dynamic table could have
an infinite number of packet behavior records, performing
distinct or duplicate over the whole dynamic table
is impossible. Therefore, distinct and duplicate are
executed over sliding windows and extract distinct or duplicate
packet behaviors for the recently-arrived packets. Intuitively,
distinct extracts the behaviors of a packet when its behav-
ior is distinct among the recently W packets (W is the window
size), and duplicate works in the similar manner.

B. Packet Behavior Query Language

Based on the above programming model, HyperSight pro-
poses PBQL for network operators to specify PBC monitoring
tasks. PBQL enables operators to express queries over fields
that represent packet behaviors, which are referred to as packet
behavior fields. Next, we will introduce all packet behavior
fields and details of the language syntax.

Packet behavior fields. As shown in Table I, there are three
types of packet behavior fields. The first type is related with
packet headers and contains fields from parsed headers. In
this paper, we only support some widely-used header fields,
including destination IP, source IP, TCP/UDP ports, and so on.
The second one is related with packet forwarding paths and
includes forwarding ports and queues. The third one is related
to packet forwarding performance.

Syntax. Table II shows the basic syntax of the query language.
Both distinct and duplicate have three parameters.
The first parameter C denotes the columns of the dynamic
table. The second parameter T specifies the keys for the
primitives. For example, if we want to find distinct destination
IP addresses, T should be < ip.dip >. Some fields, such as
delay, in T can be discretized via the mask operation (&). The
third parameter W is the window size. Furthermore, PBQL
supports query refinement, and operators can utilize existing
statements to implement more complex queries. Furthermore,
PBQL also provides start and end primitives for operators
to manipulate their query at runtime dynamically. Furthermore,
operators can designate a query to monitor specified flows

through the parameters V and V™. start uses V and V" to
create ternary match rules of five-tuples.

C. Expressibility

To demonstrate how PBQL comes into force in reality,
Table III shows nine example applications. For brevity, we
use flow to denote five-tuples throughout the paper. These
applications enhance network monitoring in various perspec-
tives. For example, with the ingress port and the egress port,
we can get the forwarding path of each flow in Q,. With
01, we can also attain the large flows whose sizes are over
215 bytes. With PBQL, network operators can conveniently
specify packet behavior change monitoring tasks. We should
claim that it is impossible for HyperSight to implement the
completed logic of the applications with PBQL. The goal of
HyperSight is to provide an interface for operators to attain
the data required by these applications from networks.

V. DESIGN OF BLOOM FILTER QUEUE

In this section, we first show the technical background and
constraints of P4 and programmable switches. Then, we will
demonstrate the detailed design of BFQ. Table IV summarizes
the symbols used by this paper.

A. Preliminary to P4 and Programmable Switches

PISA and P4. The protocol independent switch architecture
(PISA) [38] is a typical programming model for programmable
switches. PISA is composed of several reconfigurable com-
ponents. First, PISA has parser and deparser to encode and
decode headers with arbitrary protocol formats. Second, PISA
processes packets with a pipeline of stages, each of which has
multiple match-action tables and memory resources, such as
SRAM and TCAM. Third, a table has various match fields
(e.g., destination IP address) with types (i.e., exact, Ipm,
range, and ternary). Forth, a table has multiple compound
actions constructed by primitive actions, such as modify_field.
Last, each stage has a fixed amount of stateful components,

Table IV
SYMBOLS USED THROUGHOUT THE PAPER.

Description

K The number of arrays in a bloom filter
M The number of cells in an array

S The number of bloom filters in a BFQ
N The number of packets in a block

w The window size, W = (S—-1)N
Hash functions for arrays

(" Hash

{ Functions <— cells (M) —>

! hy = Hy(T; |
n =BT T T s —
i H o]
S
: 3
N N (T 1 DUPLICATE
e [T T-T7 ia T

Figure 6. Processing a packet with a Bloom Filter.

including registers, counters, and meters. Only registers can be
read and written by PISA in a transaction manner while the
other two only support either reading or writing operations.

P4 [26] is a data plane programming language. Network op-
erators can develop P4 programs to specify packet processing
behaviors of the above PISA components. The lifecycle of a
P4 program has two phases. At compile time, the P4 compiler
transforms P4 programs to executable code and generates
control API. Then, at runtime, PISA switches process packets
according to P4 programs. Meanwhile, the controller populates
match-action table entries through control API.

Constraints of PISA. To guarantee high-performance packet
forwarding, PISA inevitably introduces programmability com-
promise with constraints for complex logic. We present some
of the PISA constraints, which drive the design choices of
BFQ. The first one is constrained access to stages. In PISA,
each packet can traverse tables and stateful components only
once. Thus, we can not implement the logic (such as minimal
calculation) requiring multiple accesses to states. The second
one is constrained operations on registers. Registers are cru-
cial to implementing stateful packet processing logic on data
planes, but PISA only supports transactional register opera-
tions including read, write, read-write, write-read and so on.
The constrained transactional operations prevent implementing
complex logic over states stored in registers.

There are some off-the-shelf Bloom Filter variants, includ-
ing SBF [39], RSBF, BSBFSD, and RLBSBF [40], which
own the similar capability with BFQ, i.e., finding distinct or
duplicate items in infinite streams. However, none of them can
be implemented on PISA, as they need either multiple times
of access to same stages or non-transactional operations over
registers. Therefore, the limited feasibility of existing solutions
on PISA motivates the design of BFQ.

B. Bloom Filter Queue

In this part, we first demonstrate the philosophy of monitor-
ing packet behavior changes. Next, we will briefly introduce
Bloom Filter (BF) which can find distinct or duplicate ele-
ments in a data set with finite elements. Last, we show the
design of BFQ that can find distinct or duplicate elements in
the data stream with an infinite number of elements.

Philosophy of Monitoring Packet Behavior Changes. An
intuitive approach to monitoring packet behavior changes is
to track packet behaviors of each flow and compare packet
behaviors of previous packets with the incoming packets.
However, this approach needs to record states for each flow
and consumes unacceptable data plane resources.

Given the limitation of the above approach, we propose
to check and record the appearance of packet behaviors for
incoming packets. If some packet behavior never appears, we

Bloom Filter Queue

Enqueue |
EFS 1

C/ear

- = .

:0 DISTINCT

feonpackers—| 7772 ,:::::: e e ﬁkemm :
0 0 o o R o R P I O DUPLICATE
Block, ! Rlucka Blockyys—; Blockyss—y | Blockyss 3 BFs
—] ; [——
Troffic i Window for Recently-arrived packets
[I Expired Packets [] Recently-arrived Packets [] New Packets

Figure 7. Bloom Filter Queue design to monitor packet behavior changes.

Algorithm 1: Pseudo-code for BFQ

1 pkt_counter « 0 ;
2 foreach pkt entering a switch do

3 pkt_counter «— pkt_counter +1 ;
/* block_id denote the current block ID for
pkt. */

4 block_id «— pkt_counter | N;

/* bf_id and next_bf _id denotes the current
and next BF ID. */

5 bf _id « block_id mod S;

6 next_bf _id « (block_id+1) mod S,

7 report_flag « 0;

8 Get a T for pkt;

9 for] <k <K do

10 hy «— Hi (T) mod M;

11 for 1 <s <Sdo

12 if s # next_bf _id then

13 if BFQ[s][k][hr] =1 then

14 report_flag =report_flag+1;

15 L Break;

16 BFQ[bf _id][k][hr] < 1;

17 BFQlnext_bf _id|[k][pkt_counter mod M] « 0;
18 if report_flag < K then

19 L Generate a digest;

can identify a packet behavior change, which is similar to
finding distinct packet behaviors. We can record packet be-
havior appearance with BF, which is a probabilistic algorithm
with high memory efficiency and consumes bounded memory
resource. However, BF can only find distinct packet behaviors
for finite packets, but there could be infinite packets passing
through the switches. Moreover, an error might happen to
BF when a packet behavior changes back to a previously
existing one. To overcome the limitation of BF, we propose
BFQ, which tries to find distinct behaviors for recently-arrived
packets, or in a sliding window of packets. BFQ can find PBCs
even when the behavior of the incoming packet change back
to the behavior of previous packets that are outside the sliding
window. There is a risk that BFQ might fail when the behavior
of the incoming packet changes back to the previous packet
behavior inside the window. Luckily, this risk can be relieved
with careful adjustment of the sliding window size.

Bloom Filter. First of all, we show how a BF finds distinct
packet behaviors. As shown in Figure 6, a BF comprises K
arrays, each of which comprises M cells. The behavior of
packet pkt; is T;. Then, BF generates K positions (hy, ...)
through K different hash functions over 7;. Afterwards, BF
can get K cells (BF[1][h], F[K][hk]) for T;. In BF,
a cell contains only one bit. If all the K cells are 1, BF marks
T; as duplicate (i.e., T; has been seen before). Otherwise, BF
marks pkt; as distinct (i.e., T; has never been seen).

Bloom Filter Queue. After presenting BF, we illustrate how
packets sequentially traverse BFQ. As shown in Figure 7,

BFQ is composed of S BFs. BFQ sequentially divides packets
into fixed-size blocks, each of which has N packets. Each
BF exclusively records behaviors for a block of packets. For
example, BF; records behaviors for Block,. Every packet
queries recent S — 1 BFs to check whether its behavior has
been recorded. If all BFs mark this packet as distinct, BFQ
has never seen the packet behavior in recently-arrived packets.
Then, BFQ marks this packet as distinct and report packet
behaviors. Otherwise, BFQ marks the packet as positive and
does not report. Meanwhile, to prevent influences from expired
packets, BFQ should clear all cells in the dequeued BF, i.e.,
BF;. When all packets in the current block (Blockyis—1)
complete, the new block (Block,.s) will be shifted into the
window, and its BF (cleared BF;) will be enqueued at the
same time. Similar to the above procedure, BFQ dequeues
BF, whose block becomes expired.

BFQ maintains a window which slides at the block level and
always scans recently-arrived packets. The window size can be
calculated by (S—1)N. For every packet, BFQ checks all BFs
except for the oldest BF. If outputs of all the checked BFs are
distinct, BFQ classifies this packet behavior as distinct (never
seen in the recently-arrived packets), otherwise duplicate. We
provide a completed description of BFQ in Algorithm 1.

For BFQ, there could be two types of errors, false positive

(FP) and false negative (FN). The FP is referred to that a
distinct packet behavior is classified as the duplicate packet
behavior, while the FN is referred to that a duplicate packet
behavior is classified to be distinct. We name the possibility
that FP and FN happen as false positive rate (FPR) and
false negative rate (FNR) respectively. We present a detailed
analysis of FPR and FNR of BFQ in §VII.
Report messages of BFQ. Instead of forwarding the whole
packets, BFQ only reports the column fields for each query
to the switch CPU with generate_digest which is general
primitive action supported by almost all P4 targets. As the
packet behavior fields only occupy tens of bytes and are much
smaller than the packet sizes, BFQ takes up a small bandwidth
of the ASIC-CPU PCle channel. To further optimize the
workload of switch CPU, HyperSight proposes to buffer BFQ
reports on the data plane and forward reports in batches, which
borrows the insight of *Flow [19]. Intuitively, In this manner,
HyperSight could effectively reduce the number of messages
between ASIC and CPU, improving CPU efficiency.

VI. DYNAMIC COMPILATION

With network conditions changing over time, operators
might need different queries at different time over different
flows. In other words, HyperSight should be able to support
dynamically starting and terminating queries. To achieve this
goal, we propose to support dynamic compilation of PBQL
in this section. First, we explore the language elements that
differ among queries, which is referred to as dynamics in the
query language and determines the design space of dynamic
compilation. Next, we show the design of a BFQ extension
that supports reconfiguring PBQL dynamics without disrupting
on-service switches. As we borrow the idea of programmable
data plane virtualization [28, 29, 41], we name the extension
as virtual bloom filter queue (VBFQ).

A. Dynamics of PBOQL

In this part, we outline the dynamics in the query language.
The primary design goal of dynamic compilation is to make
these dynamics dynamically-reconfigurable.

Types and numbers of query statements. Each query has
different types, i.e., distinct and duplicate. Furthermore, as
network operators might write refinement queries, implying
that one query might have multiple query statements, just like
03, Q¢, and Qg in Table III. Thus, vBFQ should support
different types and number of query statements.

Columns and keys. In one query, network operators can
specify different packet behavior fields as the columns (C)
and keys (T). Furthermore, packet behavior fields in keys need
mask operations. Therefore, VBFQ should be able to select
packet behavior fields to construct columns and keys.

Parameters of BFQ. There are four parameters of BFQ,
including the number of cells per array (M), the number of
arrays per BF (K), the number of BF (S), and the number
of packets per block (N). On the one hand, N and S jointly
determine the window size W, i.e., W = NS — N. On the other
hand, M, K, and S jointly determine the memory occupied
by vBFQ. To be able to allocate memory and windows for
different queries at runtime, vBFQ should support dynamically
changing the four BFQ parameters.

B. Virtual Bloom Filter Queue

Figure 8 shows the overall design of VBFQ. In the P4
pipeline, we allocate multiple physical arrays, each of which
has a fixed amount of cells and a hash function. As shown
in the figure, physical arrays work as a resource pool, and
we can allocate registers from the pool for different vBFQ.
Furthermore, in Classification, we use a table to perform
ternary matching over five tuples. Thus, Classification enables
operators to perform monitoring tasks with various granulari-
ties. Moreover, vBFQ is functionally equal to BFQ without any
compromise or wastage of register resources. Next, we show
the design of VBFQ that supports the dynamics of PBQL.

Types and numbers of query statements. The two types
of query statements, i.e., distinct and duplicate, have opposite
functions. As the query results of VBFQ are enumerable, we
make a look-up table to enumerate all results and determine
whether to perform digest generation. For example, when K =
3 and S = 3, then there will be 22 kinds of results, and the look-
up table should have 512 entries for each query. Currently, we
use SRAM to perform exact match over query results, and
we can also employ ternary match to reduce the number of
table entries at the cost of consuming scarce TCAM. With
the look-up table, we can dynamically configure the query
type. To support query refinement, we install the structure
shown in Figure 8 in ingress pipelines and egress pipelines.
Currently, each structure only supports one VBFQ for one
query, thus switch ASIC can support up to 2 query statements.
To remove such constrain, we further employ switch CPU
to run the remaining query statements on software. In this
manner, HyperSight has no limit in terms of the number of
statements in one query.

start or packets per keys cells

distinct or

end block § T M, position duplicate
[[* * Physical Physical Physical Physical [
: : : V Array 1 Array 2 Array 3 Array 4 :
Hash
< S | vBFQ,[1][1] vBFQ4[1][2] | vBFQu[2][1] vBFQi[2][1] -
= 2| |8 Hy 11 . 1 [
s Q [y
& g 3 wargi | | vereuzm | | vereusim <
a ; HIE H i
g |8 |3 - 118
© [‘ vBFQ3[1][1] vBFQ3[1][2] vBFQ3[1][4] vBFQs[1][4] \L

Figure 8. Design of virtual Bloom Filter Queue.

Columns and keys. We use the field list of P4 to store
all packet behavior fields in Filed Selection. There are two
corresponding field lists, one for columns and the other for
keys. To be general for column field selection, we report all
packet behavior fields in the column field list. As for key field
selection, we perform masked modification over fields. Take
modify_field(delay,delay, mask) as an example (assume
delay has 8 bits). If keys do not include delay, the mask should
be 0, and delay will be 0. Otherwise, the mask is OxFF. If
operators want to bin delay with 16ns, the mask should be
0xFO0. After the mask operation, the key field list can be used
as the keys of Hash operations. In this manner, HyperSight
support flexible column and key selection.

Parameters of BFQ. In Counting, we maintain a packet
counter for each query, and can automatically change cur-
rent BF in BFQ according to N. In Hash, we use mod-
ify_field_with_hash_based_offset (dest, offset, field_list_calc,
M) to get the cell index for each array. of fset denotes the
position of vBFQ in physical arrays, field_list_calc contains
the key field list attained in Field Selection, and M is the
number of cells per array for the vBFQ. In this manner, we can
flexibly allocate memory for vBFQ from the physical resource
pool. Furthermore, we use a table in front of each physical
array to determine operations over the physical array for each
query. There are three kinds of operations, doing nothing,
querying the array, and clearing the array. With the controlled
operations, we can easily set S and K for each vBFQ. Based
on the above methods, we can dynamically adjust all the four
parameters of vBFQ.

C. Limitations of vBFQ

The design of vBFQ can never support dynamic reconfig-
uration of all elements and encounters two constrains. On
the one hand, vBFQ cannot add new packet behavior fields
dynamically. The column field list and key field list include
all behavior fields. When intending to add newly-found fields
into the two lists, operators have to re-load the P4 program.
On the other hand, vBFQ cannot allocate or release memory
resource of physical arrays dynamically. The amount and size
of physical arrays are fixed after the P4 program is deployed.
When operators want to install new physical arrays or extend
the physical array, they have to re-load the P4 program.
Fortunately, the above cases are infrequent for real-world
networks and are tolerable for HyperSight.

VII. EVALUATION

Prototype and setup. We built a prototype of vBFQ with
1000 lines of P4 code, and we deployed the prototype on two

P4 targets, i.e., a P4-programmable switch and a SmartNIC.
The programmable switch is equipped with a double-pipeline
Tofino ASIC, 32 100GE QSFP ports, and 4 Intel 1.60GHz
CPU cores. The SmartNIC is equipped with NFP-4000 [30]
and two 10GE ports. We build a prototype of HyperSight
dynamic compiler with 4000 lines of python code. The dy-
namic compiler runs in switch CPU and can automatically
convert queries into the Tofino chip. Moreover, we employ two
packet traces captured from real-world networks to evaluate
vBFQ. First, UNIV is from a data center network [42]. Second,
MAWI spans about one hour and is collected from an Internet
exchange point [43]. Moreover, we evaluate HyperSight under
three widely-used queries. Table V shows code, monitoring
targets, and usage of the queries.

Evaluation goals. To comprehensively understand trade-offs
made by HyperSight, we design experiments with the follow-
ing four evaluation goals. First, based on real-world packet
traces, we compare HyperSight with existing network moni-
toring tools in terms of implementing two widely-used queries,
which monitors flow paths and large flows (§VII-A). Second,
we present the scalability of HyperSight via simulating it in
a typical data center network (§VII-B). Third, we present an
in-depth analysis of BFQ and compare BFQ with five existing
algorithms that can de-duplicate elements in an infinite stream
(§VII-C). Fourth, we evaluate the performance and hardware
resource overhead of HyperSight (§VII-D).

Result overview. We summarize evaluation results as below.

o For monitoring flow paths, HyperSight achieves 100%
coverage and reduces transmission overhead by about two
orders of magnitude when comparing with NetSight. For
monitoring large flows, HyperSight completely captures all
large flows with lower than 0.1% transmission overhead on
UNIV and 1% transmission overhead on MAWL.

« In the simulation-based experiments, HyperSight can mon-
itor all congestion events and over 99% congested flows,
which is close to 5x of sampling at 1:10. Meanwhile,
HyperSight keep the overall transmission overhead lower
than 500Mbps in the fat-tree network.

» HyperSight incurs moderate resource overheads and minor
performance overheads, which brings about a small impact
on other data plane functions (e.g., routing and ACL).

A. Evaluation of HyperSight
We use HyperSight to implement Q; and Q,, and present
evaluation results as below.

Analysis on Q;. An intuitive solution for ECMP paths is
to only monitoring forwarding paths of TCP SYN packets

Table V
UERIES USED IN THE EVALUATION OF HyperSight.
ypersig
Query Monitoring targets Used by
| = distinct (<flow, in_port, eg_port>, <flow, in_port, eg_port>) ECMP flow paths VII-B, §VII-D, §VII-E
p g_p! p g_p! p
h» = distinct (<flow, tcp.seq>, <flow, tcp.seq&0OxFFF00000>).duplicate (¥, <flow> Large flows VII-B
p-seq p-seq g

Q3 = distinct (<flow, qid, delay>, <flow, gid, delay&0xFC00>) Congested flows SVII-C

100 100 80 o0 w/o O
g IS = w/ 05
g 10 -‘g 10 $60 %30 W/ 010

~ =]
T £ 1 &40 22,0
8 S "0 g
310
01 0.1 —) .
oL0% 0% 0% 0% 0% 1% s 111 11 5
\(\e“’)ég@ ,\/,59 ’&j&@x&@ \)\6\)\606 210 511 912 513 514 515 516 917 518 519 210 211 912 213 514 515 516 217 I8 519
N !

\61‘:&9%“\ NS x.\f@xﬁfp Y\r’\,\evo6

(a) Coverage on UNIV (b) Overhead on UNIV

100 100
S IS
% 10 >~ 10
Q
@ 8
ﬂJ <
2 1 T 1
3 3

0.1 0.1

Packets per Block (log2-scale) Packets per Block (log2-scale)

(a) FPR on UNIV (b) Overhead on UNIV

80

x
=)

w/o O
w/ 05

60 = W/ 010

o
=)

FPR (%)
B
=
Overhead (x107%)
5] &
=)

5%
0% 0% 0% 0% 0% 0% 1% pm 0 JJJJJJ

Woodt 20 pFd® K Wt P Ee® Ko

(c) Coverage on MAWI (d) Overhead on MAWI
Figure 9. Coverage and overhead comparison in terms of Q;.

at the beginning of flows. However, this solution fails when
ECMP paths change due to link failures or load balancing. Q;
enables monitoring paths continuously and provides visibility
of path changes. In the experiments of Q;, we compare
HyperSight with three countermeasures, including the ideal
baseline, NetSight [9], and sampling. For the ideal baseline,
we only generate one report for one ECMP flow path and
can cover all flows. NetSight reports messages for all packets.
Sampling is configured with different ratios, including 1:10,
1:100, and 1:1000. As for HyperSight, we show coverage
and overheads of HyperSight (HS) and optimized HyperSight
whose batch size is five (HS-05).

As shown in Figure 9(a) and Figure 9(c), the ideal baseline
and NetSight can monitor all ECMP paths for all flows. With
the sampling ratio increasing from 1:10 to 1:1000, the cover-
age of sampling decreases dramatically. For 1:10, the coverage
ratio is about 28%, while the ratio is as low as 3% for 1:1000.
For both packet traces, the coverage ratio of HS and HS-O5
are larger than 99.99%. Figure 9(b) and Figure 9(d) shows the
monitoring overheads, i.e., the ratio of monitoring messages
to normal packets. NetSight generates monitoring messages
for all packets and incurs unacceptable overheads. As for
sampling, the overhead decreases linearly as the sampling ratio
increases. HS incurs several percentages of overheads, which
is comparable to sampling 1:100. Furthermore, HS-O5 reduces
overheads by 80%. In summary, as for Q;, HyperSight is the
only one that is close to the ideal baseline and can achieve
both good coverage and low overheads.

Analysis on Q,. In Q,, we utilize HyperSight to monitor the
flows whose sizes are larger than 220 bytes. In the experiments,
we measure FPR and overheads under different numbers of
packets per block. Furthermore, we measure the overheads of
HyperSight when the optimization batch size is 1 w/o O, 5w/
05, and 10 (w/ 0O10).

210 Il 512 513 514 2;5 216 917 918 519 210 211 912 913 514 515 516 517 518 519

Packets per Block (log2-scale) Packets per Block (log2-scale)
(¢) FPR on MAWI (d) Overhead on MAWI
Figure 10. False positive rates and overheads in terms of Q.

As shown in Figure 10(a) and Figure 10(c), HyperSight
can keep 0% FPR when the window size is small. When
the window size further increases, FPR increases accordingly.
As shown in Figure 10(b) and Figure 10(d), the overhead
decreases dramatically with the window size increasing. For
example, when there are 2'* packets per block for UNIV, we
can monitor all large flows. If the switch ASIC is forwarding
packets at 1Gpps, the switch CPU should be about to process
monitoring messages at 2Mpps. With the optimization, the
switch CPU should only work at 200Kpps, which is within
the capability of the switch CPU. Notably, the query running
in ASIC inevitably generate false negatives, but the agent in
switch CPU can faithfully remove those false negatives.

B. Simulation of HyperSight

We simulate a fat-tree network with k = 4 using NS3 (20
switches and 32 hosts). In the simulation, links are configured
with 1Gbps bandwidth and 1ms delay, and switches ports are
configured with one queue whose size is 1000 packets. During
the simulation, each host emits 1000 TCP flows to any other
host, and the start time of flows follows a uniform distribution.
We employ a heavy-tailed Pareto distribution to derive flow
sizes [44] whose mean is 10000 bytes. We run Qs in switches
to monitoring congestion events and flows.

Congestion characteristics of simulation traffic. We trace
en-queuing length of each packet in each switch to under-
stand queuing length evolvement, congestion events, congested
flows, and congested packets, named congestion characteris-
tics, which are shown in Figure 11(a). We use different queue
thresholds to classify whether queues are congested. More
specifically, when the queue length exceeds the threshold,
the congestion happens, and the congestion ends as soon as
the queue length drops down below the threshold. In our
experiments, the congestion thresholds can be 16, 32, and

80 Edge Aggregate Core 1.0
= 60 08
o0
= 0.6
Fao 50
o [SRY = Threshold = 16
3 20 02 - Threshold = 32
3 i ! -4~ Threshold = 64
S 0 .AimeM.MHL.ILuu_MA.JL 0.0 preshold=
2.00 201 202 2.03 2.04 205 0 200 400 600
Time (s) Congestion Event Count
(a) Queue length (b) Congestion events
1.0 1.0
0.8 0.8
o 0.6 . 0.6
a [a)
O 04 = Threshold = 16 O 04 = Threshold = 16
02 - Threshold = 32 02 & Threshold = 32
4 Threshold = 64 4~ Threshold = 64
0.0 0.0
0 5000 10000 15000 0.00 0.01 0.02 0.03 0.04

Congestion Flow Count Congested Packet Ratio

(c) Congestion flows (d) Congestion packets

Figure 11. Queue, congestion events, congestion flows, and congestion
packets in the simulation experiment.

Mean: [1:10 [1:200 [HSL [HS2 HS3 Mean: [1:10 [1:100 [HSL | HS2 HS3
1.2t Min-Max [1.2} Min-Max: |
4 2
5. B I o
3038 >0.8
Q
O O
B 3
504 o4
0.0 0.0

16 16 32

R 64
Congestion Threshold Congestion Threshold

(a) Event coverage (b) Flow coverage

@
25%~75%: [HS1 [HS2 [l HS3 Q 110 1:100
005 e T Men: — < 600 B HSL Hs2 [Hs3
§ § 400
T 0.03 T
3 3
¢} & & =
002 £20
' < - - | 2
001 2o
16 32 64 o 16 32 64
Congestion Threshold Congestion Threshold

(c) Packet overhead (d) Bandwidth overhead

Figure 12. Using sampling and HyperSight to detect congestion events
and flows.

64. Figure 11(a) shows the queuing length evolvement of
three ports in an edge switch, an aggregate switch, and a
core switch. Edge switches encounter more congestion events
than aggregate switches and core switches. Figure 11(b) and
Figure 11(c) show the cumulative distribution of congestion
events and flows in one switch. When the congestion threshold
rises, the numbers of congestion events and congestion flows
decrease. Furthermore, we show the ratio of packets experi-
encing congestion in Figure 11(d), revealing that congested
packets only take up a small portion of overall traffic.

Analysis on Q3. As for Q3, we present the congestion event
coverage, congestion flow coverage, as well as overheads
in packets and bandwidth in Figure 12. In the experiment,
we compare HyperSight (optimization batch size is 5) with
sampling (1:10 and 1:100). Moreover, we change the num-
bers of packet per block to 4000 (HSI), 10000 (HS2), and
20000 (HS3) for HyperSight. As for event coverage shown in
Figure 12(a), HyperSight can monitor over 99% congestion
events in all switches while sampling at 1:100 can only supply
information of 43%-81% congestion events on average. As
for flow coverage shown in Figure 12(b), sampling performs
worse. Sampling at 1:10 can only monitor no more than
22% congestion flows. HyperSight keeps flow coverage over
99% with 4000 packets per block. As for packet overheads

100.0 ——BSBF 30r . ——BSBF ——BSBFSD
80.0 ——BSBFSD 25 —+— RLBSBF —— SBF
& —+— RLBSBF o0 BF BFQ
= 600 SBF S N
15
& 400 BF gl
&9 BFQ [E9
20.0 ——— 0.5
0.0} ettt eeeoe 0.0 3 .
ZIU 2]4 212(222 226 2]0 zll 214 21(1 ZIX 22(! 2’.’2 224 ZZ(v
No. of Cells per Array (log2-scale) No. of Cells per Array (log2-scale)
(a) FPR (b) FNR
100.0 100.0} petmemts—s—s—s—gpa—s
—~ 80.0 _ ——BSBF
5 60.0 § 999 —— BSBESD
O 998 —+—RLBSBF
z 40.0 &) —— SBF
Z 200 < 997 BF
BFQ
oop | 99.6F |
ZIU 2]4 212(222 226 2]0 214 ZIX 222 ZZ(t
No. of Cells per Array (log2-scale) No. of Cells per Array (log2-scale)
(c) NPV (d) ACC

Figure 13. Algorithm comparison with varied numbers of cells per array.

shown in Figure 12(c), monitoring messages generated by
HyperSight take up several percents of normal packets, and
packet overheads decrease significantly with the packets per
block increasing. As for bandwidth overheads shown in
Figure 12(d), HyperSight generates 500Mbps network-wide
monitoring traffic at most. Each switch generates 25Mbps
monitoring traffic, which occupies 0.3% of switch bandwidth.
Overall, HyperSight enables high-coverage and low-overhead
congestion monitoring, and largely outperforms sampling.

C. Analysis of BFQ

To comprehensively understand the characteristics of BFQ,
we compare it with the BF baseline and other four widely-
used algorithms, including SBF [39], RSBF, BSBFSD, and
RLBSBF [40]. All algorithms are tested against UNIV under
Qi. Due to space constraints, we only show four metrics,
including FPR, FNR, negative predicate value (NPV), and
accuracy (ACC).

Analysis of varied M. Figure 13 shows compression of the
algorithms with M increasing from 2'° to 2% when K is
3. Bigger M is, the more memory algorithms occupy. For
HyperSight, S is 4, and N is 65536. As shown in Figure 13(a)
and Figure 13(d), BF encounters almost 100% FPR and
zero ACC when the available memory is small, revealing
that BF cannot be applied to infinite packet streams. Other
algorithms including BFQ extend BF to work over the infinite
stream. With M increasing, FPRs of all algorithms decrease
significantly. For BFQ, it can keep FPR low and accuracy
high even if there is a small amount of memory, which
is preferable to performing monitoring tasks over resource-
constrained switches. Furthermore, as shown in Figure 13(b)
and Figure 13(c), FNR and NPV of BFQ are constant.

Analysis of varied K. Figure 14 compares the algorithms with
K increasing from 2 to 5 when M is 65536. For HyperSight,
S is 4, and N is 65536. As shown in Figure 14(a), BF keeps
a high FPR, and FPRs of The other algorithms decrease with
the number of arrays. As shown in Figure 14(b), BF has a zero
FNR. The FNR of the other algorithms except BFQ increases
with K, while BFQ has a decreased FNR when K increases.
Because when K decreases, the window size of recently-
arrived packets decreases. This increases the possibility that

100 [BSBF [BSBFSD Bl RLBSBF
| 3.0 SBF BF BFQ
o 80 BSBF BSBFSD Bl RLBSBF o
X F F F S
< 60 S8 5 BrQ S20
g g
w40 =10
20 I
o= | > = 0.0 , > >
2 3 4 5 4
No. of Arrays No of Arrays
(a) FPR (b) FNR
100 100
1 | N | il |
~ 80r [BSBF W BSBFSD Ml RLBSBF ~ 80f | I BSBF BSBFSD I RLBSBF
X N
c;/ 60 SBF BF BFQ 8 60 SBF BFQ
=" O
Z 40 = 40
20 20
oLl | | | 0
2 3 4 5 2
No. of Arrays No of Arrays
(c) NPV (d) ACC

Figure 14. Comparison of different algorithms with varied numbers of
arrays (K).

30 _ _ 3.0 —a— §=2 —o— §=3
S S=2 e 83 17 - §=4 o §=5
S o S=4 e S=5 / L S=6 s=7
X 20 S=6 s=7 20 S=8
& 5=8 &
1o Z 1o
0 0000004 0.0
2|(\ 2]4 2]8 222 26 211) 2|4 2“(222 226
Packets per Block (log2-scale) Packets per Block (log2-scale)
(a) FPR (b) FNR

Figure 15. FPR and FNR of BFQ with varied packet per block (V).

0010} = N=409% 2.0 —e—N=4096 —=—N=8192
—e—N=28192 —&—N = 16384 —+— N =32768
—~ —~~
S —a—N = 16384 P
= ——N=32768 <L
> 0.005 %
- e 10 >
0.000f &= ——
0.5
2 3 4 5 6 71 8 2 3 4 5 6 71 8
No. of BF No. of BF
(a) FPR (b) FNR

Figure 16. FPR and FNR of BFQ with varied numbers of BF (S).

duplicated packet behaviors are classified as distinct packet
behaviors, and packets with duplicated behaviors are more
likely to be in different windows. Figure 14(d) demonstrates
that BFQ has similar accuracy with the other algorithms.

Analysis of varied N and S. Figure 15 and Figure 16 shows
FPR and FNR of BFQ with N increasing from 2!° to 22> when
M, K are 65536 and 4 respectively. As shown in Figure 15(a),
FPR of BFQ is close to zero when the number of packets
per block is small. Then, FPR will grow linearly with N.
It is intuitive as bigger N is, one BF in BFQ should check
more packets simultaneously, which inevitably brings FPR up.
As for FNR shown in Figure 15(b), FNR decreases with §
increasing. In the experiments, N ranges from 4096 to 32768.
As shown in Figure 16(a), FPR of BFQ increases slightly with
S, and N has an impact on the increasing speed. As for FNR
shown in Figure 16(b), FNR decreases with § increasing.

Summary. Based on the above results, we reasonably claim
that BFQ performs comparably to existing algorithms for
infinite streams. Meanwhile, BFQ is implementable on pro-
grammable switches while the other BF extension algorithms
are too complex for programmable switches. Furthermore,
BFQ’s parameters can be dynamically adjusted by operators at
runtime to make a desirable trade-off between FPR and FNR.

30 Mean w/o BFQ Mean w/ BFQ 10 Mean w/o BFQ Mean w/ BFQ
T 1%-99% T 1%-99%
—~24 l ~ 8 1 BE
2
2 2
[IRNEE il
= = =
j53 [5} -
812 I 2 e I
6 ‘ 2
0 0
64 128 256 512 1024 1280 1500 64 128 256 512 1024 1280 1500

Packet Size (bytes) Packet Size (bytes)
(a) Delay on SmartNIC (b) Delay on Tofino
Figure 17. Performance overhead introduced by BFQ.

D. Overheads of vBFQ

HyperSight needs to deploy vBFQ on different P4 targets,
such as Tofino, SmartNIC, and FPGA. First, vBFQ needs to
perform field selection, store counters, and get final results,
which introduce additional usage of data plane resources, such
as matching crossbar, SRAM, and TCAM. Second, vBFQ
introduces additional processing logic, which might influence
packet forwarding performance. Next, we will analyze re-
source overheads and performance overheads of vBFQ.

Resource usage. In this part, we show the hardware resource
usage of VBFQ, and we build a prototype of vBFQ that is
configured with eight 65536-cell arrays. Table VI shows the
results normalized by the resource usage of Switch.P4. vBFQ
only needs 11.97% VLIW actions to implement compound
actions and 29.09% packet header vector to accommodate
metadata. Furthermore, vBFQ can consume a moderate num-
ber of stateful ALUs, which occupies 66.67% of Switch.P4. As
the resource results are normalized by Switch.P4 which uses
few registers, which makes the stateful ALU consumption of
HyperSight seem high. When compared to the overall switches
resources, the stateful ALU consumption of vBFQ is small. In
the previous publication [1], we also propose an algorithm
that can significantly reduce the amount of stateful ALUs
consumed by vBFQ. In summary, vBFQ brings acceptable
resource overheads to hardware targets and have a small
impact on the other data plane functions.

Performance overhead. There raises a concern that vBFQ
could bring performance overheads. We deploy vBFQ on
Tofino and SmartNIC and measure the forwarding delay of
ECMP with (w/) or without (w/o) vBFQ against packets
of varied sizes. Figure 17 shows the evaluation results. We
present not only mean delay but also the 1-99% interval
to show whether vBFQ affects delay jitters. As shown in
Figure 17(a), vBFQ introduces a modest delay increase in
SmartNIC. For packets of all sizes, the delay increases by
about 2ps. As shown in Figure 17(b), vBFQ introduces dozens
of nanoseconds delay increase on Tofino. On both targets,
vBFQ has a close-to-zero impact on delay jitter.
Table VI

ADDITIONAL HARDWARE RESOURCES CONSUMED WITH 16 SOURCE
ROUTING LABELS. THE VALUES ARE NORMALIZED BY THE USAGE OF

SWITCH.P4.
Resources Normalized Usage
Match Crossbar 15.53%
SRAM 20.48%
TCAM 33.33%
Very Long Instruction Word (VLIW) Actions 11.97%
Hash Bits 13.54%
Stateful Arithmetic Logical Units (Stateful ALU) 66.67%
Packet Header Vector (PHV) 29.09%

VIII. CONCLUSION

This paper presents HyperSight, an efficient network
monitor for packet behavior changes. HyperSight proposes
behavior-level monitoring, which brings a remarkable decrease
in monitoring cost with high monitoring coverage. HyperSight
presents a declarative query language to enable convenient
expression of various packet behavior monitoring tasks. Hy-
perSight proposes BFQ to empower a powerful capability
for monitoring packet behavior changes. HyperSight proposes
to virtualize BFQ to implement dynamic monitoring tasks
without disrupting switches. HyperSight supports a wide range
of network monitoring queries and can monitor over 99%
packet behavior changes while reducing overheads by two
orders of magnitude. In our future work, HyperSight will
explore automatically tuning the number of cells per array in
vBFQ for accuracy guarantee and monitoring network-wide
packet behavior changes.

ACKNOWLEDGEMENT

This research is supported by National Key R&D Pro-
gram of China (2017YFB0801701) and the National Science
Foundation of China (No. 61872426, No. 61625203, and No.
61832013). Tong Yang is the corresponding author. We thank
Chen Sun, Zhilong Zheng, Yiran Zhang, Yunsenxiao Lin, and
Heng Yu for their insightful suggestions.

REFERENCES

[11 Y. Zhou, J. Bi, T. Yang, K. Gao, C. Zhang, J. Cao, and Y. Wang,
“Keysight: Troubleshooting programmable switches via scalable high-
coverage behavior tracking,” in Proceedings of ICNP, 2018.

[2] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-
able load balancing using programmable data planes,” in Proceedings
of SOSR, 2016.

[3] N. Katta, M. Hira, A. Ghag, C. Kim, I. Keslassy, and J. Rexford, “Clove:
How i learned to stop worrying about the core and love the edge,” in
Proceedings of HotNets, 2016.

[4] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in Proceedings of SIGCOMM, 2018.

[5] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in Proceedings of CoNEXT, 2011.

[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vah-
dat, “Hedera: Dynamic flow scheduling for data center networks,” in
Proceedings of NSDI, 2010.

[71 Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao, and H. Zheng, “Packet-level telemetry
in large datacenter networks,” in Proceedings of SIGCOMM, 2015.

[8] D. Yu, Y. Zhu, B. Arzani, R. Fonseca, T. Zhang, K. Deng, and
L. Yuan, “dshark: A general, easy to program and scalable framework
for analyzing in-network packet traces,” in Proceedings of NSDI, 2019.

[9] N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres, and N. McKeown,

“I know what your packet did last hop: Using packet histories to

troubleshoot networks,” in Proceedings of NSDI, 2014.

C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,

V. Wang, B. Pang et al., “Pingmesh: A large-scale system for data

center network latency measurement and analysis,” in Proceedings of

SIGCOMM, 2015.

1. Farris, T. Taleb, Y. Khettab, and J. Song, “A survey on emerging sdn

and nfv security mechanisms for iot systems,” IEEE Communications

Surveys Tutorials, vol. 21, no. 1, 2019.

Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum,

and A. Vahdat, “SIMON: A simple and scalable method for sensing,

inference and measurement in data center networks,” in Proceeding of

NSDI, 2019.

M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Trumpet: Timely and

precise triggers in data centers,” in Proceedings of SIGCOMM, 2016.

[10]

(11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]

[19]

[20]
[21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]
[37]
(38]
[39]

[40]

[41]
[42]
[43]

[44]

J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal,
J. Carter, and R. Fonseca, “Planck: Millisecond-scale monitoring and
control for commodity networks,” in Proceedings of SIGCOMM, 2014.
B. Claise, “Cisco systems netflow services export version 9,” Website,
http://www.rfc-editor.org/rfc/rfc3954.txt.

sFlow, “sflow,” Website, https://sflow.org/.

J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “Opensample: A
low-latency, sampling-based measurement platform for commodity sdn,”
in Proceedings of ICDCS, 2014.

J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Turboflow:
Information Rich Flow Record Generation on Commodity Switches,”
in Proceedings of EuroSys, 2018.

J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith, “Scaling
hardware accelerated network monitoring to concurrent and dynamic
queries with *flow,” in Proceedings of ATC, 2018.

Y. Li et al., “Lossradar: Fast detection of lost packets in data center
networks,” in Proceedings of CoNEXT, 2016.

Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: A better netflow for
data centers,” in Proceedings of NSDI, 2016.

T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of SIGCOMM, 2018.

Q. Huang, P. P. C. Lee, and Y. Bao, “Sketchlearn: Relieving user burdens
in approximate measurement with automated statistical inference,” in
Proceedings of SIGCOMM, 2018.

M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Proceedings of NSDI, 2013.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in Pro-
ceedings of SIGCOMM, 2013.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
CCR, vol. 44, no. 3, Jul. 2014.
Barefoot Networks, ‘“Barefoot
barefootnetworks.com/technology/.
C. Zhang, J. Bi, Y. Zhou, A. Basit, and J. Wu, “Hyperv: A high
performance hypervisor for virtualization of the programmable data
plane,” in Proceedings of ICCCN, 2017.

D. Hancock and J. van der Merwe, “Hyper4: Using p4 to virtualize the
programmable data plane,” in Proceedings of CoNEXT, 2016.
Netronome, “Netronome flow processor,” Website, https://netronome.
com/product/nfp-6xxx/.

“The code of keysight,” Website, https://github.com/KeySight-P4.

V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of SOSR, 2017.

Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proceedings of SIGCOMM, 2016.

A. Gupta, R. Harrison, A. Pawar, R. Birkner, M. Canini, N. Feamster,
J. Rexford, and W. Willinger, “Sonata: Query-driven streaming network
telemetry,” in Proceedings of SIGCOMM, 2018.

S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in Proceedings of SIGCOMM, 2017.
P4 Language Consortium, “P4 runtime,” Website, https://github.com/
p4lang/PIL.

The Apache Software Foundation, “Flink: Stateful computations over
data streams,” Website, https:/flink.apache.org.

Barefoot Networks, “The world’s fastest & most programmable net-
works,” Website, https://goo.gl/1mtjpf.

F. Deng and D. Rafiei, “Approximately detecting duplicates for stream-
ing data using stable bloom filters,” in Proceedings of SIGMOD, 2006.
S. K. Bera, S. Dutta, A. Narang, and S. Bhattacherjee, “Advanced bloom
filter based algorithms for efficient approximate data de-duplication in
streams,” CoRR, 2012.

C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, and J. Wu, “Mpvisor: A modular
programmable data plane hypervisor,” in Proceedings of SOSR, 2017.
T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of IMC, 2010.

WIDE Project, “Mawi working group traffic archive,” Website, http:
//mawi.wide.ad.jp/mawi/.

V. Paxson, “Empirically derived analytic models of wide-area tcp
connections,” IEEE/ACM Trans. Netw., vol. 2, no. 4, p. 316-336, Aug.
1994. [Online]. Available: https://doi.org/10.1109/90.330413

tofino switch,” Website, https://

