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Abstract—In this paper, we propose a new type of item in data
streams, called simplex items. Simplex items have frequencies
in consecutive p windows that can be approximated by a
polynomial of degree at most k, where k = 0, 1, 2. These low-
order representable simplex items have a wide range of potential
applications. For example, when k = 1, we can leverage these
items whose frequency has obvious linear increase or decrease to
speed up the running time of a class of machine learning models
and detect network attacks such as distributed denial-of-service
(DDoS), etc. To find k-degree simplex items in real time, we
propose a novel sketch, namely X-Sketch, to accurately record
simplex items in a compact space. The key idea of X-Sketch
is to effectively filter out non-simplex items with less memory
overhead, and then monitor the remaining potential simplex items
and keep those items with more consecutive windows. We conduct
extensive experiments, and the experimental results show that the
F1 Score of X-Sketch is on average 68.6%, 57.9%, and 42.2%
higher than the baseline solution for k = 0, 1, 2, respectively.
Finally, we also provide a case study that applies X-Sketch to
“accelerate” the two machine learning models through end-to-
end experiments. We have released our source code at GitHub.

I. INTRODUCTION

A. Background and Motivation
Nowadays, the tasks of frequency estimation and finding

frequent items in data streams have been well studied by the

research community [1]–[6]. Sketches, as a kind of proba-

bilistic data structures, have gained widespread acceptance for

these tasks because they can well handle large-scale and high-

speed data streams with limited memory overhead and small

errors [7]–[10].

However, we find that patterns in which item frequencies

present in a certain number of consecutive windows are also

worth exploring, but have not been investigated. To better

describe these patterns, we first divide the data stream into

multiple equal-sized and contiguous windows. Then, we pro-

pose that such patterns in p continuous windows may be fitted

by k-degree polynomials, and only consider the low-order

polynomials of k = 0, 1, 2, because constant (k = 0), primary

(k = 1), and quadratic (k = 2) functions are the most basic

function forms that are most common to represent in both

mathematics and nature. We name such low-order expressible

items as k-simplex items, as shown in Figure 1. For the specific

mathematical definition of k-simplex items, see Section II-A

for details. Next, we list the use cases of k-simplex items:
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Fig. 1: Examples of k-simplex items, where p = 7. The

blue dots are the frequencies of the items in their respective

windows, and the red lines are the corresponding fitted k-

degree polynomials.

When k = 0, we are looking for items whose frequencies

remain essentially stable over p consecutive windows, and call

them 0-simplex items. Here are two example applications for

finding such items. 1) If we consider a cache line as an item

[11], then 0-simplex items mean that these stable cache lines

will be fetched in the near future [12], [13]. Therefore, we

can apply 0-simplex items to prefetch the upcoming cache

line, thereby improving the cache hit ratio. 2) If we consider

a network flow1 as an item, we can precisely pre-allocate

bandwidth for such stable flows in the next time period for

network management [14]–[16].

When k = 1, we are looking for items whose frequencies

increase or decrease linearly over p consecutive windows, and

call them 1-simplex items. Here are two example applications

for finding such items. 1) We can consider the slopes of

the 1-simplex items as important features for the input of

machine learning models. In particular, we can speed up the

running of some machine learning models (e.g., regression

[17], ARIMA [18], etc.) by finding 1-simplex items in data

streams in advance, so as to greatly reduce the time required.

2) Some network attacks such as distributed denial-of-service

(DDoS) have traffic patterns that can be described linearly

after processing [19]–[21]. Finding 1-simplex items can help

to detect such attacks dynamically in real time.

When k = 2, we are looking for items whose frequencies

are parabola shaped over p consecutive windows, and call them

2-simplex items. Here is an example applications for finding

such items. Periodic 2-simplex items are considered to be

the main traffic patterns generated in some wireless networks

1A flow is generally defined as a part of the five tuple: source IP address,
destination IP address, source port, destination port, and protocol.



(e.g., adopting IEEE 802.15.4 MAC protocol) [22], so we can

dynamically monitor such traffic to judge the performance of

the corresponding networks.

To the best of our knowledge, no existing literature has

given the same or similar definitions for k-simplex items, and

there are no direct solutions for finding k-simplex items in data

streams, but this can be addressed by adapting combinations

of existing solutions. Here, we provide a baseline solution

consisting mainly of multiple CM sketches [23], each of

which can separately record the frequency of the items in its

corresponding window and perform polynomial fitting after the

k-simplex definition (Section II-A2) is satisfied. Unfortunately,

this baseline solution is unsatisfactory in terms of accuracy and

memory efficiency, and requires the cooperation of additional

data structures such as hash tables [24], as detailed in Section

III-A. Therefore, the goal of this paper is to propose a sketch

algorithm that is generic, accurate and compact for specialized

finding k-simplex items of k = 0, 1, 2 in real time in high-

speed data streams.

B. Proposed Solution
Towards the design goal, we propose a novel sketch al-

gorithm, called Simplex-Sketch (X-Sketch for short), for

accurately and efficiently finding k-simplex items in real time.

X-Sketch is generic: It only needs one X-Sketch to find the

three types of k-simplex items with k = 0, 1, 2. X-Sketch

is compact and memory efficient: It only requires 150KB of

memory consumption when processing 30 Million items. X-

Sketch is accurate: Compared with the baseline solution, X-

Sketch improves the F1 Score by 68.6%, 57.9%, and 42.2%

on average for k = 0, 1, 2, respectively.

X-Sketch includes two parts: Stage 1 and Stage 2. For each

input item, Stage 1 uses a more compact data structure in

conjunction with our Short-Term Filtering technique to obtain

the potential simplex items. Stage 2 further identifies simplex

items accurately through our Weight Election technique. Now,

we introduce these techniques as follows.

Short-Term Filtering. We find that items that are simplex

in p consecutive windows show a certain simplex pattern in

the first s windows (s < p). Therefore, we design a processing

mechanism to judge the likelihood of becoming simplex items

by observing whether the items are simplex in the first s
windows. In addition, the proportion of non-simplex items is

quite large, while simplex items generally account for very

little in data streams. For example, in the IP Trace Dataset

[25], simplex items represent only for about 0.44%, 0.018%

and 0.0068% of all items, for k = 0, 1, 2, respectively. It

would be very memory inefficient to process all items, so

we integrate the above mechanism by tailoring TowerSketch

[26] to effectively filter out non-simplex items. After Short-

Term Filtering, we further design a reasonable indicator called

Potential for each remaining item as an optimization, to further

evaluate whether it can become a true simplex item after

entering Stage 2. In this way, we screen again to get potential

simplex items that can be delivered to Stage 2.

Weight Election. The more ideal a simplex item is, the

longer the number of consecutive windows it has. Based on

this design philosophy, we define a weight for each item en-

tering Stage 2, the size of which is the number of consecutive

windows of the item. Further, we design a suitable replacement

strategy based on the weight to favor/keep those items with

higher weights as efficiently as possible. More details are

provided in Section III-D.

Further, we analyse our scheme rigorously in Section IV.

Then, we conduct extensive experiments on real-world streams

and the synthetic dataset. The results show that X-Sketch has

clear advantages over the baseline scheme in finding k-simplex

items in data streams. See Section V for details. Finally,

we apply X-Sketch to reduce the running time of the linear

regression and ARIMA models mostly by more than 100× in

Section VI. All related codes are released at GitHub [27].

II. PROBLEM STATEMENT AND RELATED WORK

A. Problem Statement
The symbols frequently used in this paper and their mean-

ings are shown in Table I in our Appendices [28].

1) Definitions of Data Streams and Windows:
Definition 1. Data Stream Model. A data stream S =
(e1, e2, e3, . . . , ei, . . . ) is an unbounded sequence of items
appearing one by one. Each item may appear more than once,
and the number of occurrences is the frequency.
Definition 2. Count-based Window Model. We divide the data
stream S into many equal-sized and continuous windows, and
the window size is defined as a fixed number of items.

2) Definition of K-Simplex Items:
An item e is called k-simplex item from window w

if and only if its frequencies in p consecutive windows

fw, fw+1, · · · , fw+p−1 satisfy:

(1) fw+i > 0, ∀i = 0, 1, · · · , p− 1;

(2) There exists a kth-degree polynomial

f(n) = a0 + a1n+ a2n
2 + · · ·+ akn

k =

k∑
j=0

ajn
j ,

such that the mean squared error (MSE) ε satisfies

ε =
1

p

p−1∑
i=0

(f(i)− fw+i)
2 ≤ T ;

where T is a predefined threshold.

B. Related Work
1) Prior Art:
In fact, there is no work directly related to simplex items.

Therefore, we first introduce finding persistent items, which

looks a bit like finding 0-simplex items but is actually quite

different. Then, we introduce the sketch algorithms related to

frequency estimation, because finding simplex items requires

first estimating the frequency of items in each window.

The relationship and difference between simplex and
persistent items. Items are defined as persistent items if the

number of windows in which they appear exceeds a predefined

threshold [29]–[36], and simplex items are also related to

the number of windows in which the items appear. However,

the statistical process of a persistent item is only related

to whether the item has appeared in a window, regardless

of how many times it has appeared in this window, and is



also completely independent of whether these windows are

continuous or whether the item frequencies satisfy a k-degree

polynomial over these windows (i.e., the Definition above).

2) Frequency Estimation:
Simple sketches: The CM sketch (CM) [23] is composed

of d counter arrays, each associated with a hash function and

having a certain number of counters. When inserting an item,

CM first maps it to a counter in each array by computing the

hash function, and then increments all d mapped counters by

1. When querying an item, CM reports the minimum value

among the d mapped counters. The CU sketch (CU) [37] is

similar to CM, except that CU only increments the minimum

value among the d mapped counters by 1 when inserting the

item, and does not support deletion. Other common schemes

include sketches of Count [38] and CSM [39].

Advanced sketches: 1) Frequency estimation for frequent
items. Cold Filter [40] is a double-layer CU that that first

records the frequencies of all items, then filters infrequent

items and leaves frequent items by setting a threshold. LogLog

Filter [41] inherits Cold Filter and replaces CU with LogLog

structure [42], [43] to filter a wider range of infrequent

items. Other state-of-the-art schemes include PyramidSketch

[44], MV-Sketch [45], and ElasticSketch [46], etc. 2) Fre-

quency estimation for per-item. TowerSketch (Tower) [26]

uses different-sized counters for different arrays while allo-

cating the same memory for each array, and supports both

CM and CU insertion. Higher-level arrays therefore have

fewer counters, while its counters have larger sizes. In this

way, frequent items overflow in lower-level counters, so their

frequencies are kept in higher-level/large counters, whereas the

frequencies of infrequent items are kept in lower-level/small

counters. The number of small counters at the bottom of

the “tower” is significantly higher than the number of large

counters at the top of the “tower”, so Tower estimates the

frequency of infrequent items more accurately.

III. X-SKETCH DESIGN

A. Baseline Solution

Based on the CM sketch [23], we can divide our baseline

solution into two parts. For recording the estimated frequencies

for the latest p windows, we construct p CM sketches. In each

CM sketch, we construct d counter arrays Ai(1 ≤ i ≤ d) to

maintain the frequencies of items, and each array is associated

with one hash function fi. In CM sketch, when an item e
is coming, it is first mapped into each array with the hash

function fi and increments the counter Ai[fi(e)] by 1. Then,

we select the counter min(Ai[fi(e)]) as the frequency of item

e in the query process. In addition, we use a set to store the

item ID of the potential simplex items in each window, and

combine a hash table to record the lasting time of simplex

items. The sketches and set are periodically cleared. Our

insertion procedure is as follows. When an item appears in

a window w, we first compute w modulo p (denoted as w%p)

to select the CM sketch representing the current window and

increment its recorded frequency by 1. At the same time, we

check the sketch representing previous windows and identify

the continuity. If it is not interrupted, we insert it into the

set as a potential simplex item. At the end of each window,

we traverse the entire set and get the frequencies in previous p
windows, and perform polynomial fitting. Finally, if it satisfies

the k-simplex definition, we insert it into the hash table

and record its lasting time. Although our baseline solution

is able to detect simplex items, there is still much room for

improvement in terms of memory overhead and accuracy.

B. Finding the Polynomial with Minimum MSE

In statistics, a linear regression model assumes that given

the input Xi = (xi0, · · · , xik)(0 ≤ i ≤ p− 1), the response yi
satisfies

yi = β0xi0 + β1xi1 + · · ·+ βkxik + ei =

k∑
j=0

βjxij + ei, (1)

where βj(0 ≤ j ≤ k) are unknown parameters and ei(0 ≤ i ≤
p− 1) are i.i.d. random with expectation equal to zero. If we

define a p × (k + 1) matrix X = (xij)(0 ≤ i ≤ p − 1, 0 ≤
j ≤ k) and Y = (y0, · · · , yp−1)

T , e = (e0, · · · , ep−1)
T , β =

(β0, · · · , βk)
T , the linear regression model can be written as

Y = Xβ + e. (2)
In X-Sketch, for a potential simplex item e with its fre-

quencies in p consecutive windows fw, fw+1, · · · , fw+p−1,

our task is to find a polynomial with minimum MSE ε.

(a0, · · · , ak) = argmin
β∈Rk+1

1

p

p−1∑
i=0

(f(i)− fw+i)
2

=argmin
β∈Rk+1

1

p
||Y −Xβ||2.

(3)

Hence yi = fw+i, xij = ij , and

X =

⎛
⎜⎜⎜⎝
1 0 · · · 0
1 1 · · · 1
...

... . . .
...

1 p− 1 · · · (p− 1)k

⎞
⎟⎟⎟⎠ . (4)

By the normal equation, the parameter β with minimum MSE

satisfies

XTXβ = XTY, (5)

which can be simplified as β = (XTX)−1XTY . Since sim-

plex items with different ID and different start windows share

the same matrix (XTX)−1XT , this matrix can be calculated

and stored in advance. Finding the polynomial hence only

involves matrix multiplication for one time within O(pk2)
time, and computing the matrix (XTX)−1XT in advance can

be done in O(pk2) time, which is time-efficient and space-

efficient in practice.

C. Optimization: Threshold for Coefficient of Highest Order

Since the MSE will not increase when we increase the

degree of the polynomial, an item e will surely be k-simplex

if it is already (k − 1)-simplex. For instance, a train with a

constant velocity will always have a stable acceleration (equal

to 0), and the velocity of a car in a parking lot cannot change

sharply. To distinguish k-simplex items from the (k − 1)-
simplex ones, we propose the following method: the absolute

value of the coefficient of the highest order in the polynomial

f(n) = a0 + a1n + · · · + akn
k cannot be too small, and
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Fig. 2: Data structure and example of X-Sketch.

only items with large |ak| will be reported as k-simplex items.

Specifically, we add a threshold L for ak. In Section V, we

set L = 1 by default. After finding out the polynomial with

minimum MSE, we check whether the inequality |ak| ≥ L
holds. If |ak| < L, then our algorithm will not report e as

a k-simplex item, even if it has a small MSE. This way, the

highest order of the polynomial dominates the frequencies of

the item and we prevent over-fitting.

D. The X-Sketch
Overview: As shown in Figure 2, X-Sketch consists of

two parts, called Stage 1 and Stage 2. Stage 1 starts with

recording item frequencies. It filters out non-simplex items

using the Short-Term Filtering technique, and then evaluates

the remaining items using the Potential optimization to obtain

a set of potential simplex items to be handled by Stage 2.

Next, Stage 2 keeps and reports final simplex items, using the

Weight Election technique.

1) Stage 1:
Data Structure: Stage 1 is a Tower [26] (Section II-B2)

consisting of d arrays: A1,A2, · · · ,Ad, each of which has

qi(1 ≤ i ≤ d) counters of size 2i+1 and is associated with a

hash function hi(.). Each counter has s sub-counters to record

the item frequencies of the latest s windows, where s is a

predefined value less than p.

Rationale: Instead of directly use p sub-counters to record

the item frequencies of p consecutive windows, we use the

shorter s sub-counters to record the item frequencies of s con-

secutive windows to save memory, and replace the occupation

for the extra p− s sub-counters with Stage 2 of less memory.

Key Technique I: Short-Term Filtering. Its key idea is

to leverage the data structure of Towers to record item fre-

quencies accurately and quickly filter out the items that do not

meet the Preliminary Condition, which requires that the items
satisfy more than s consecutive windows and these frequencies
can be fitted with polynomials of k-degree. Specifically, we

use lower-level small counters to record non-simplex items

that are easily interrupted for filtering, while higher-level large

counters are used to record the relatively continuous potential

simplex items. The process slides every s windows and clears

the non-simplex items. We compare the performance of Tower

and other state-of-the-art filtering schemes in Section V-B.

Optimization: Potential. Here, we define a Potential
Λ for each item that has passed Short-Term Filtering to further

filter out items with insufficient potential. Λ integrates the two

most critical variables: ε and |ak|, as follows.

Λ =
|ak|
ε+Δ

(6)

where |ak| is the kth coefficient, ε is the MSE of the

polynomial fitting, and Δ is a very small number that prevents

the denominator from being 0. Next, if Λ ≥ G (where G is a

pre-set potential threshold), we estimate that it will continue

to be a truly simplex item for at least p continuous windows

after being sent to Stage 2. Finally, we insert it into Stage 2

as a potential simplex item.

2) Stage 2:
Data Structure: Stage 2 is a hash table with m buckets:

B1, B2, · · · , Bm. There are u cells in each bucket, and each cell

contains three fields: ID, Count, and starting window wstr. The

Count field consists of p counters, which are used to record

the frequencies of the latest p windows for an item. The hash

function h(.) randomly maps the item to one of the buckets.

Rationale: Stage 2 not only finds the items that satisfy the

k-simplex definition, but also accurately selects and keeps the

simplex items with a larger number of consecutive windows.

Key Technique II: Weight Election. Its key idea is to

define a Weight W for each potential simplex item entering

Stage 2 with a reasonable replacement strategy, to protect/keep

those simplex items with greater weights from being replaced.

Here, we define W as the lasting time t (number of consecutive

windows) of the item, which can also be calculated as the

difference between the current window w and the starting

window wstr, with the following equation:

W = w − wstr = t (7)

where wstr is defined as the earliest start window where the

current item may start satisfying the k-simplex definition to the

current window. For a potential simplex item that has passed

Stage 1 and is about to be inserted into Stage 2, wstr is

logically set to w − s + 1. Next, we design a replacement

strategy based on Equation 7 for each potential simplex item.

When the mapped bucket is full, the inserted item tries to

replace the item with the smallest weight with the probability

of P = 1
Wmin

, where Wmin is the smallest weight in the

bucket, which means it has the largest/latest wstr.

3) Operations:
Insertion: The pseudo-code of the insertion operation is

shown in Algorithm 1. When an item e appears in the current

window w, we first map it to the bucket B[h(e)] in Stage 2

through the hash function h(e). We show how to insert e into

B[h(e)], which can be summarized in two cases as follows.

Case 1: If e is already recorded in B[h(e)], we just update

the information of the cell that records e: select the counter



representing the current window by computing w%p, and

increment its Count field by 1.
Case 2: If e is not in B[h(e)], then we first try to insert e

into Stage 1: we map e to counters A1[h1(e)], A2[h2(e)], · · · ,

Ai[hi(e)], · · · , Ad[hd(e)] by computing d hash functions. For

this, we first select the sub-counters representing the current

window by computing w%s among the mapped counters,

and then choose one of the following two versions of the

operations: (1) increment the frequencies of all these sub-

counters by 1, which we call the CM version of X-Sketch

(XS-CM); (2) increment the frequency of the sub-counter

with the smallest value among them by 1, which we call

the CU version of X-Sketch (XS-CU). Next, we read the

frequencies of the latest s windows, and return if there is 0.

Conversely, if the Preliminary Condition (Section III-D1) is

satisfied, we perform polynomial fitting on the frequencies of

these s windows < fw−s+1, · · · , fw >. Then, we calculate

the Potential Λe of e by Equation 6. If Λe < G, then

we return. Otherwise, since e has become a potential simplex

item, we set wstr to w−s+1, and insert e into Stage 2 again.

There are two sub-cases:

1) If bucket B[h(e)] contains at least one empty cell, we insert

e and its frequencies in s windows into an arbitrary empty

cell.

2) If the bucket B[h(e)] is full, we try to replace the item

with the smallest weight in the bucket with e according to

P = 1
Wmin

. If the replacement condition holds, e occupies

the cell containing the item with the smallest weight. It

updates its frequencies in the last s windows to the query

results from Stage 1, and sets its frequencies in other

windows to 0. Finally, the frequencies of e are set to

< 0, · · · , fw−p+1, · · · , fw >. Otherwise, we return.

Report: At the end of each window, we only need to

traverse Stage 2: for each potential simplex item, we perform

polynomial fitting on it, and report if the item satisfies the

k-simplex definition.
Cleaning Policy: In Stage 1, we clean all counters at the

end of each window. In Stage 2, if the frequency of an item in

the current window is 0, then we clear it directly. If the number

of windows for the recorded item frequencies is less than p,

then we return. Otherwise, we perform polynomial fitting on

the frequencies of these p windows < fw−p+1, · · · , fw >.

Further, if the k-simplex definition is satisfied, the starting

window wstr is unchanged and the item is reported. Otherwise,

wstr is updated to w− p+2. Finally, we clear all the earliest

counters to record the item frequency of the next window. The

pseudo-code of the window transition procedure in Stage 2 is

shown in Algorithm 2.
Example: As shown in Figure 2, we assume w = 28,

k = 1, s = 4, p = 8, Δ = 10−6, d = m = 3, u = 2,

G = 10, and L = T = 1. (1) When receiving item e7, X-

Sketch maps it to B3. Since there is a cell storing e7, X-Sketch

selects the corresponding counter by calculating 28%8 = 4
and increments its frequency by 1: 1 + 1 = 2. Then, X-

Sketch performs polynomial fitting on its frequencies and gets

f(n) = −0.7738n + 5.8333. Since |a1| < L = 1, we do

not report it and return. (2) When receiving item e3, � X-

Sketch maps it to Stage 2 and finds not present in any bucket.

Then, � X-Sketch maps it to one of the buckets in each array

of Stage 1, selects the corresponding counters by calculating

28%4 = 0, and increments the frequency of the counter with

the smallest value among them by 1: 0 + 1 = 1. Since the s
counters in this bucket of the A3 array are full, � X-Sketch

performs a 1-degree polynomial fitting on its frequencies and

gets f(n) = 2.4n+0.9, where a1 = 2.4 and ε = 0.05. Next, �
X-Sketch calculates Λe3 = 48, which is greater than G, then

� inserts e3 into Stage 2 again and maps it to B1. While B1

is full, � X-Sketch calculates the weights of all items in B1:

We2 = 4 and We9 = 8. Finally, � X-Sketch uses e3 to replace

the smallest weight item e2 with probability P = 1
4 = 0.25.

Assuming that the probability condition is satisfied, 	 then e3
successfully evicts e2.

Algorithm 1: Insertion Procedure

Input: an item e in window w;

1 map e into bucket B[h(e)] in Stage 2;

2 if e is in Stage 2 then
3 suppose e in the bucket is < e, fw−p+1, · · · , fw >;

4 update e into < e, fw−p+1, · · · , fw + 1 >;

5 else
6 for 1 ≤ i ≤ d do
7 map e into counter Ai[hi(e)] in Stage 1;

8 Ai[hi(e)] ← Ai[hi(e)] + 1;

9 query Stage 1, it reports < f ′
w−s+1, · · · , f ′

w >;

10 if ∃i ∈ {w − s+ 1, · · · , w}, s.t. f ′
i = 0 then

11 return;

12 calculate the potential of e, suppose it is Λe;

13 if Λe < G then
14 return;

15 find the item e∗ in bucket B[h(e)] with smallest

weight Wmin;

16 e replaces e∗ with probability P = 1
Wmin

;

17 if e succeeds to replace e∗ in bucket B[h(e)] then
18 insert < e, 0, · · · , f ′

w−s+1, · · · , f ′
w > into

bucket B[h(e)] and set wstr to w − s+ 1;

E. The Effects of X-Sketch’s Key Parameters
We divide the key parameters of X-Sketch into two cate-

gories: 1) parameters for problem definition; 2) parameters for

algorithm design. Please see the Appendices [28] for details.

IV. MATHEMATICAL ANALYSIS

In this section, we first show the error bound of frequency

in Stage 1 and claim the no estimation error of frequency in

Stage 2. Then, we use the error bound of frequency to derive

the error bound of ak and ε. Finally, we analyze the time

complexity of X-Sketch.

A. Error Bound of Stage 1
Theorem 1. Please refer to the Appendices [28] for details.

Proof. The proof of this theorem is also provided in [28].



Algorithm 2: Stage 2 Transition Procedure

1 for 1 ≤ i ≤ m do
2 for 1 ≤ j ≤ u do
3 suppose the item in the cell is

< e, fw−p+1, · · · , fw >;

4 if fw = 0 then
5 evict e from the bucket;

6 continue;

7 perform polynomial fitting on e;

8 if ak ≥ L and ε ≤ T then
9 report (e, w − p+ 1) as a simplex item;

10 else
11 B[i][j].wstr ← w − p+ 2;

12 update e to < e, fw−p+2, · · · , fw, 0 >;

B. Proof of no Estimation Error in Stage 2
Theorem 2. For an arbitrary item e, assume e enters stage 2
in window w1, and is evicted from stage 2 in window w2. Let
fw be its real frequency in window w, and f̂w be its frequency
in window w reported by stage 2, then fw = f̂w for w1 <
w < w2.

Proof. For w1 < w < w2, since e is inserted into stage 2 in

window w1 and is evicted from stage 2 in window w2, item e
stays in stage 2 throughout window w, As a result, if item e
comes for fw times in window w, the counter of window w
in stage 2 will increment for fw times. Hence fw = f̂w.

C. Error Bound of ak and ε

In this part, we give error bounds for the fitting poly-

nomial w.r.t. the error of frequency in Stage 1 and Stage

2. For an arbitrary item e and a start window w, we use

Y = (fw, · · · , fw+p−1) to denote its real frequency, and

Ŷ = (f̂w, · · · , f̂w+p−1) to denote its frequency reported by X-

Sketch. We use β = (a0, · · · , ak) to denote its real coefficients

of the polynomial with minimum MSE, β̂ = (â0, · · · , âk) to

denote the coefficients reported by X-Sketch, and ε be the real

MSE, ε̂ be the MSE reported by X-Sketch.
For an n-dimensional vector x, we use ||x||n to denote its

norm, i.e.

||x||n = ||(x1, · · · , xn)||n =

(
n∑

i=1

x2
i

) 1
2

.

For a m× n matrix A, we use ||A|| to denote its norm, i.e.

||A|| = sup
x∈Rn/{0}

||Ax||m
||x||n .

Theorem 3. The estimation error of ak is bounded.

|ak − âk| ≤ ||(XTX)−1XT || · ||Y − Ŷ ||p. (8)

Proof. Since β = (XTX)−1XTY and β̂ = (XTX)−1XT Ŷ ,

then
||β − β̂||k+1 = ||(XTX)−1XT (Y − Ŷ )||k+1

≤ ||(XTX)−1XT || · ||Y − Ŷ ||p.
(9)

Hence, Equation 8 holds since

||β − β̂||k+1 =

(
k∑

i=0

(ai − âi)
2

) 1
2

≥ |ak − âk|. (10)

Theorem 4. The estimation error of ε is bounded.

|ε− ε̂| ≤ 2

p
max{||Y ||p, ||Ŷ ||p} · ||A|| · ||Y − Ŷ ||p, (11)

where matrix A is defined as
A = Ip −X(XTX)−1XT

and Ip is the identity matrix of size p.

Proof. Since β and β̂ satisfy

XTXβ = XTY,XTXβ̂ = XT Ŷ
and XTX is invertible, then

ε =
1

p
(Y −Xβ)T (Y −Xβ)

=
1

p
(Y TY − 2βTXTY + βTXTXβ)

=
1

p
(Y TY − βTXTY )

=
1

p
(Y TY − Y TX(XTX)−1XTY ) =

1

p
Y TAY.

(12)

Similarly, ε̂ = 1
p Ŷ

TAŶ , and

|ε− ε̂| = 1

p
|(Y + Ŷ )TA(Y − Ŷ )|

≤ 1

p
||Y + Ŷ ||p · ||A|| · ||Y − Ŷ ||p

≤ 2

p
max{||Y ||p, ||Ŷ ||p} · ||A|| · ||Y − Ŷ ||p.

(13)

Hence, Equation 11 holds.

The two theorems above show that once we control the

estimation error of Y , then the estimation error of ak and ε
will also be controlled.

D. Time Cost of X-Sketch

Theorem 5. For each item in the data stream, the time cost
to handle it is O(1).

Proof. For each item e in the data stream, we first use hash

function h(e) to map it into Stage 2. If e is in bucket B[h(e)],
we update its frequency and return, the time cost of which is

O(u). Otherwise, we use d hash functions hi(e) to map it into

Stage 1 and increment the counter, with a time complexity of

O(d). Then, we query its frequency in the last s windows and

start polynomial fitting. The query operation costs O(sd) time

and polynomial fitting through linear regression costs O(sk2)
time. Also, we check the starting window of u items from

bucket B[h(e)], which costs O(u) time. Finally, we try to insert

e into Stage 2 according to its weight, which costs O(p) time.

At the end of every window, we clear Stage 1 and perform

linear regression to report every potential k-simplex item in

Stage 2, for an amortized time cost of O(pk2). In conclusion,

the time cost for every item only depends on these parameters.

In data stream models, p, k, s, u, d are all very small (each of

them is smaller than 10 in practice) to achieve high throughput,

so the time cost to handle each item e can be viewed as O(1).



V. EXPERIMENTAL RESULTS

In this section, we provide experimental results with X-

Sketch. First, we describe the experimental setup in Section

V-A. Then, we show how parameter settings affect X-Sketch’s

performance in Section V-B. Finally, we evaluate the perfor-

mance of X-Sketch on different datasets in Section V-C.

A. Experimental Setup
Implementation: We implement X-Sketch and all other algo-

rithms in C++, and use 32-bit Bob Hash (obtained from the

open-source website [47]) with different initial seeds.

Computation Platform: We conduct all the experiments on

a server with one 18-core processor (36 threads, Intel(R)

Core(TM) i9-10980XE CPU @ 3.00GHz) and 128 GB DRAM

memory. The processor has 64KB L1 cache, 1MB L2 cache

for each core, and 24.75MB L3 cache shared by all cores.

Metrics:
1) Precision Rate (PR): The ratio of true positive instances

to all reported instances.

2) Recall Rate (RR): The ratio of true positive instances to

all actual instances.

3) F1 Score: 2∗RR∗PR
RR+PR .

4) Average Relative Error (ARE): Let t̂1, t̂2, . . . , t̂z be

the estimated lasting time of the reported items, and let

t1, t2, . . . , tz be the true lasting time of the reported items.

ARE is defined as 1
z ·∑z

j=1
|tj−t̂j |

tj
.

5) Throughput: We use Million of operations (insertions) per

second (Mops) to measure the throughput.

Datasets: We use three real-world datasets and one Synthetic

Dataset. For each dataset above, we divide it into 3000

windows, each containing 10000 items.

1) IP Trace Dataset. The IP Trace Dataset is streams of

anonymized IP traces collected in 2016 by CAIDA [25].

2) MAWI Dataset: The MAWI Dataset is a set of anonymized

traffic traces collected from trans-Pacific backbone link by

MAWI Working Group [48].

3) Data Center Dataset. The Data center dataset [49] contains

traces collected from the data centers studied in [50].

4) Synthetic Dataset. We generate the Synthetic Datasets that

follows the Zipf [51] distribution using Web Polygraph [52],

an open-source performance testing tool. Here, we use the

dataset with skewness of 1.5.

B. Experiments on Parameter Settings
In this section, we measure the effects of some key param-

eters of X-Sketch (XS-CM) on k = 0, 1, 2, namely, number of

consecutive windows p in the definition, the number of cells u
per bucket in Stage 2, the ratio r of the memory size of Stage

1 to the memory size of the whole X-Sketch, the number s of

the latest windows recorded in Stage 1, the threshold G for

Potential Λ, the threshold T for MSE ε, and the data structure

used by Stage 1 mentioned in Section III-D1. We use the IP

Trace Dataset in these experiments, and F1 Score to evaluate

the effects. We default d = 3.
Effects of p (Figure 3(a)-3(c)): The experimental results

show that the optimal value for p is from 4 to 7. In this

experiment, we vary p from 4 to 8 with a step size of 1. The
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Fig. 3: Effects of the parameter: p

results show that the F1 Score mainly decreases as p increases,

especially when the memory size is 500KB. However, the F1

Score peaks when p = 7 for k = 1 for this memory size.

When the memory size is 1000KB/1500KB, the weakening of

F1 Score becomes smaller with the increase of p. Considering

that a larger p implies obtaining more ideal simplex items, we

set p = 7 for k = 0, 1, 2. The reason for the trend in Figure 3

is that increasing p requires more memory overhead.

Effects of u (Figure 4(a)-4(c)): The experimental results
show that the optimal value for u is from 4 to 8. In this

experiment, we vary u from 1 to 8 with a step size of 1. The

results show that when u is less than 3, the F1 Score increases

as u increases, but when u exceeds 4, the F1 Score tends to be

stable. Since larger u means smaller throughput, we set u to 4

for k = 0, 1, 2 in our experiments. The reason for the trend in

Figure 4 is that as u increases, the least weighted item in the

bucket is replaced more accurately based on the replacement

strategy in Section III-D2, which eventually finds the simplex

items more accurately.
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Fig. 4: Effects of the parameter: u

Effects of r (Figure 5(a)-5(c)): The experimental results
show that the optimal value for r is from 0.7 to 0.8. In this

experiment, we vary r from 0.1 to 0.9 with a step size of 0.1.

We find that 0.7 or 0.8 is always the optimal value for r in 3

different memory cases. Thus, we set r to 0.8 for k = 0, 1, 2
in our experiments. The reason for the trend in Figure 5 is

that Stage 1 filters non-simplex items more accurately as r
increases. However, if r is too large, there will not be enough

memory in Stage 2 to keep the final simplex items, resulting

in a decrease in accuracy.
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Fig. 5: Effects of the parameter: r



Effects of s (Figure 6(a)-6(c)): The experimental results
show that the optimal value for s is from 3 to 4. In this

experiment, we vary s from 3 to 7 with a step size of 1. The

results show that the F1 Score mostly decreases as s increases.

However, when the memory size is 150KB, the F1 Score peaks

when s = 4 for k = 1. Since the F1 Scores for s = 3 and

s = 4 are close, we set s to 4 for k = 0, 1, 2 to to ensure

that Stage 1 filters out more items. The reason for the trend in

Figure 6 is that the filtering in Stage 1 is more accurate but at

the same time requires more memory overhead as s increases.
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Fig. 6: Effects of the parameter: s

Effects of G (Figure 7(a)-7(c)): The experimental results
show that the optimal value for G is from 0.5 to 1. In this

experiment, we vary G from 0 to 1 with a step size of 0.25.

We find that when G is less than 0.25, the F1 Score obviously

increases as G increases, but when G exceeds 0.5, the F1 Score

tends to be stable. Thus, we set G to 0.5 for k = 0, 1, 2. The

reason for the trend in Figure 7 is that true simplex items may

be missed when G is large, while too many non-simplex items

may be passed to Stage 2 when G is small. However, for a

large range of G, our replacement mechanism makes it work

to detect true simplex items from items entering Stage 2.
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Fig. 7: Effects of the parameter: G

Effects of T (Figure 8(a)-8(c)): The experimental results
show that the optimal value of T is different for k = 0, 1, 2.
In this experiment, we vary T from 1 to 8 with a step size of

1. 1) The results show that the value of T has no significant

effect on the F1 Score for k = 0. For simplicity, we set T to

1 for k = 0. 2) When the memory size is 200/250KB, the F1

Score increases as T increases as a whole for k = 1. However,

when the memory is 150KB, the F1 Score decreases first and

then fluctuates as T increases. For simplicity, we set T to 2

for k = 1. 3) When the memory size is 200/250KB, we find

that the F1 Score peaks when T = 4 for k = 2. When the

memory size is 150KB, the F1 Score increases slowly when T
is greater than 4. Thus, we set T to 4 for k = 2. The reason for

the trend in Figure 8 is that a larger T means greater tolerance

for higher order polynomial fitting errors which contributes to

a slight increase in accuracy.
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Effects of Stage 1 data structure (Figure 9(a)-9(c)): The
experimental results show that the best data structure for
Stage 1 is TowerSketch. We choose Cold Filter (CF) [40],

LogLog Filter (LLF) [41] and TowerSketch (CM and CU

versions) [26] currently used for comparison. The results show

that TowerSketch always outperforms the two state-of-the-art

schemes in terms of filtering.
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Fig. 9: Effects of Stage 1 data structure.

C. Experiments on Finding K-Simplex Items
In this section, we set k = 0, 1, 2, and compare the

performance of X-Sketch (CM and CU versions, written as

XS-CM and XS-CU) with the baseline solution on three real-

world datasets and one Synthetic Dataset in the metrics below.

We default p = 7 and d = 3.
1) Precision Rate (PR):
(1) k=0 (Figure 10(a)-10(d)): XS-CM and XS-CU achieve

75.8% and 76.0% higher PR than the baseline solution on

average, respectively; (2) k=1 (Figure 15(a)-15(d)): XS-CM

and XS-CU achieve 60.8% and 64.3% higher PR than the

baseline solution on average, respectively; (3) k=2 (Figure
20(a)-20(d)): XS-CM and XS-CU achieve 46.0% and 49.0%

higher PR than the baseline solution on average, respectively.
2) Recall Rate (RR):
(1) k=0 (Figure 11(a)-11(d)): XS-CM and XS-CU achieve

42.0% and 44.0% higher RR than the baseline solution on

average, respectively; (2) k=1 (Figure 16(a)-16(d)): XS-CM

and XS-CU achieve 43.3% and 45.2% higher RR than the

baseline solution on average, respectively; (3) k=2 (Figure
21(a)-21(d)): XS-CM and XS-CU achieve 27.5% and 30.0%

higher RR than the baseline solution on average, respectively.
3) F1 Score:
(1) k=0 (Figure 12(a)-12(d)): XS-CM and XS-CU achieve

67.5% and 68.6% higher F1 Score than the baseline solution

on average, respectively; (2) k=1 (Figure 17(a)-17(d)): XS-

CM and XS-CU achieve 55.2% and 57.9% higher F1 Score

than the baseline solution on average, respectively; (3) k=2
(Figure 22(a)-22(d)): XS-CM and XS-CU achieve 39.5% and

42.2% higher F1 Score than the baseline solution on average,

respectively.



4) Average Relative Error (ARE):
(1) k=0 (Figure 13(a)-13(d)): XS-CM and XS-CU achieve

371.5 and 442.0 times lower ARE than the baseline solution

on average, respectively; (2) k=1 (Figure 18(a)-18(d)): XS-

CM and XS-CU achieve 30.6 and 140.0 times lower ARE than

the baseline solution on average, respectively; (3) k=2 (Figure
23(a)-23(d)): On IP Trace and MAWI datasets, the ARE of

XS-CM and XS-CU is around 26.6 and 72.0 times lower than

the one of the baseline solution on average, respectively2.

5) Throughput:
(1) k=0 (Figure 14(a)-14(d)): XS-CM and XS-CU achieve

1.63 and 1.59 times higher throughput than the baseline solu-

tion on average, respectively; (2) k=1 (Figure 19(a)-19(d)):
XS-CM and XS-CU achieve 1.79 and 1.75 times higher

throughput than the baseline solution on average, respectively;

(3) k=2 (Figure 24(a)-24(d)): The throughput of XS-CM and

XS-CU is around 1.81 and 1.77 times lower than the one of

the baseline solution on average, respectively.

6) Conclusion and Discussion on Higher K:
The higher the k, the fewer simplex items are obtained that

satisfy the definition, provided that the other parameters do not

change. As a result, the filtering effect of our key techniques,

especially in Stage 1, becomes less evident and the advantage

of accuracy with the baseline solution diminishes. We also

provide experimental results for k = 3 in the Appendices [28].

VI. X-SKETCH FOR ML

Machine learning (ML) models are often used to predict

the frequency of a certain item. However, to the best of our

knowledge, these models require massive training datasets

and loops of training epochs to achieve high performance,

which is challenging in real-time data stream processing with

high speed and large scale. Also, not all items in reality

follow a strict and predictable pattern. Simply predicting the

frequency of all items in the datasets is inefficient, and most

of these predictions are even false or inaccurate. Therefore, X-

Sketch can be applied to “accelerate” ML algorithms: We first

filter possible simplex items using X-Sketch and predict their

frequency by the fitting polynomial. For other not-simplex

items, ML can predict their frequency in the coming window

if necessary. In this part, we compare the following three

schemes on the accuracy and running time of prediction.

1) X-Sketch: We use X-Sketch to find all simplex items

(e, w). If e is reported as a simplex item in window w, · · · , w+
p− 1, we predict its frequency in window w + p.

2) Linear Regression Model: We use linear regressing

model to predict all items in data streams whether an item

is simplex or not.

3) Time Series Model: We use Autoregressive Integrated

Moving Average Model (ARIMA) [18] to check the autocor-

relation of every simplex item and predict their frequency.

A. Experimental Setup
Implementation: We have implemented linear regression

model and time series model in Python, and X-Sketch in both

2For k = 2, the AREs of XS-CM on the Synthetic are all 0, and the AREs
of XS-CU on both the Synthetic and Data Center datasets are all 0.

TABLE II: Experiments on the IP Trace Dataset.
Model Accuracy (%) Running Time (s)

k = 0
X-Sketch (C++ / py) 99.97 0.05 / 0.248

Linear Regression 99.34 26.5
Time Series 99.62 1158

k = 1
X-Sketch (C++ / py) 92.75 0.04 / 0.244

Linear Regression 86.31 26.4
Time Series 96.23 53.8

k = 2
X-Sketch (C++ / py) 92.95 0.04 / 0.246

Linear Regression 93.60 26.8
Time Series 97.90 433

TABLE III: Experiments on the Transactional Dataset.
Model Accuracy (%) Running Time (s)

k = 0
X-Sketch (C++ / py) 98.49 0.014 / 0.225

Linear Regression 98.38 2.14
Time Series 98.47 71

k = 1
X-Sketch (C++ / py) 90.71 0.013 / 0.222

Linear Regression 91.67 2.11
Time Series 93.67 37.6

k = 2
X-Sketch (C++ / py) 85.31 0.015 / 0.228

Linear Regression 85.67 2.13
Time Series 95.36 71.8

C++ and Python. We first run X-Sketch to get all k-simplex

items. Then, we test the performance of three algorithms on

these simplex items. We allocate 300KB memory for X-Sketch

(C++/Python), while others use as large memory as they can.

Metrics: 1) Accuracy: The ratio of the number of accurate

predictions to the number of predictions. For every item, if

the predicted result does not deviate from the ground truth

too much, we classify this prediction as accurate. 2) Running
Time: The total running time of finishing all predictions.

Datasets: We use the four datasets mentioned in Section V-A

(only the results of IP Trace are shown, see the Appendices

[28] for others) plus a synthetic dataset called Transactional

Dataset and generated by IBM Almaden Quest research group

[53]. For each dataset, we use the first 300000 items and divide

them into 30 windows, each containing 10000 items.

B. Experiments on Different Datasets
Our experiments show that X-Sketch can improve the run-

ning time of predictions by at least a factor of 100/9× (i.e.,
C++/Python) and still maintain a high level of accuracy.

Results on the IP Trace Dataset. X-Sketch’s run-

ning times are 530/106.9×, 660/108.2×, 670/108.9× and

23160/4669.4×, 1345/220.5×, 10825/1760.2× faster than the

linear regression and time series for k = 0, 1, 2, respectively.

The accuracy of X-Sketch all exceed 90% within 0.05/0.25

(i.e., C++/Python) seconds, while linear regression model

takes nearly 30 seconds to achieve similar accuracy. Although

time series model forecast these items more accurately, it

usually takes several minutes to get a satisfactory result.

Results on the Transactional Dataset. X-Sketch’s run-

ning times are 152.9/9.5×, 162.3/9.5×, 142/9.3× and

5071.4/315.6×, 2892.3/169.4×, 4786.7/314.9× faster than the

linear regression and time series for k = 0, 1, 2, respectively.

It achieves 85% accuracy in just 0.02/0.22 seconds, while the

linear regression takes more than 2 seconds to achieve the

same performance. The running time of time series model

largely depends on the number of items we want to predict, and

its throughput is always inferior to X-Sketch for k = 0, 1, 2.
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Fig. 10: Precision Rate (PR) on finding 0-simplex items.
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Fig. 11: Recall Rate (RR) on finding 0-simplex items.
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Fig. 12: F1 Score on finding 0-simplex items.
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Fig. 13: ARE on finding 0-simplex items.
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Fig. 14: Throughput on finding 0-simplex items.
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Fig. 15: Precision Rate (PR) on finding 1-simplex items.
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Fig. 16: Recall Rate (RR) on finding 1-simplex items.
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Fig. 17: F1 Score on finding 1-simplex items.
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Fig. 18: ARE on finding 1-simplex items.
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Fig. 19: Throughput on finding 1-simplex items.
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Fig. 20: Precision Rate (PR) on finding 2-simplex items.
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Fig. 21: Recall Rate (RR) on finding 2-simplex items.
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Fig. 22: F1 Score on finding 2-simplex items.
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Fig. 23: ARE on finding 2-simplex items.
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Fig. 24: Throughput on finding 2-simplex items.



VII. CONCLUSION

In this paper, we define a new pattern in data streams: k-

simplex items, whose frequencies in several consecutive win-

dows can be fitted by a polynomial of k-degree (k = 0, 1, 2).

We proposes a novel sketch algorithm called X-Sketch for

finding k-degree simplex items in real time, which is memory-

efficient and accurate. Our experimental results show that the

F1 Score of X-Sketch is on average 68.6%, 57.9%, and 42.2%

higher than the baseline solution for k = 0, 1, 2, respectively.

In addition, our case-specific experiments validate that it can
also be applied to reduce the running time of the linear

regression and time series models mostly by more than 100×.
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