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ABSTRACT
Network monitoring and management require accurate statistics of
a variety of flow-level metrics, such as flow sizes, top-k flows, and
number of flows. Arguably, the most commonly used data struc-
ture to record and measure these metrics is the sketch. While a
significant amount of work has already been done on sketching
techniques, there is still a lot of room for improvement because the
accuracy of existing sketches depends a lot on the nature of network
traffic and varies significantly as the network traffic characteristics
change. In this paper, we propose the idea of employing machine
learning to reduce this dependence of the accuracy of sketches on
network traffic characteristics and present a generalized machine
learning framework that increases the accuracy of sketches signifi-
cantly. We further present three case studies, where we applied our
framework on sketches for measuring three well-known flow-level
network metrics. Experimental results show that machine learning
helps decrease the error rates of existing sketches by up to 202
times.
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1 INTRODUCTION
Network monitoring and management tasks such as traffic engi-
neering [12, 16, 19–21, 27, 28], anomaly detection [3, 4, 17, 22], and
forensics [26] require accurate and timely statistics of a variety of
network flow-level metrics. One of the most effective methods to
measure such flow-level metrics is to use sketching techniques. A
sketching technique consists of two entities, a sketch, which is a
set of counters or bitmaps associated with hash functions, and an
algorithm, which is a set of simple operations that record approxi-
mate information about the metric of interest into the sketch. The
algorithm can also estimate the metric of interest by applying ap-
propriate statistical techniques on the sketch. Sketching techniques
have found a widespread use in a variety of network monitoring
and management tasks such as estimation of flow sizes [6], heavy
hitters [3, 5, 22], and number of flows [13]. The key reason behind
such widespread usage of sketches is that sketching techniques
enable network administrators to do a provable trade-off among
the accuracy of estimates, the memory used to store the sketch, and
the computational overhead.

While researchers have made significant contributions in de-
signing sketching techniques, we argue that a significant room for
improvement still exists because the accuracies of existing sketches
vary a lot with changing characteristics of network traffic [7]. The
reason behind this is that the algorithms that insert approximate
information about the desired metric into the sketches and then
estimate that metric when required, are based on hand-derived
theoretical models. In order to hand-derive such models, it is imper-
ative to make simplifying assumptions about the network traffic
because hand-deriving a model that covers all practical scenarios
is just not possible. As the characteristics of network traffic vary
a lot in practice and the simplifying assumptions do not always
hold, the accuracies of existing sketches vary a lot when used in
real-world deployments.

In this paper, we explore the idea of using machine learning
to automate the process of building these models and embedding
this automated process into the algorithm such that a human is no
more required to foresee various network traffic characteristics and
hand-derive the corresponding models. We propose a generalized
machine learning framework that automatically and intrinsically
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adapts the estimation algorithms of sketches by learning the cur-
rent characteristics of network traffic on the fly, which in turn
improves the accuracy of the sketches irrespective of any changes
in network traffic characteristics. More specifically, instead of using
statistical techniques that are based on hand-derived models, we
continuously retrain machine learning models using a very small
number of samples from the same traffic whose information is be-
ing stored in the sketch. As the samples are drawn from the same
network environment as the traffic being monitored, they follow
the same distribution as the traffic. Consequently, the machine
learning models continue to adapt to any variations in the network
traffic characteristics without requiring to first manually foresee
the scenarios and then manually design statistical techniques for
those scenarios. When estimating the desired flow-level metric, our
framework employs these continuously adapting models, which
leads to a significant increase in the accuracy.

2 BACKGROUND
2.1 Sketches to Estimate Flow Size
There are three classic sketching techniques used in recording the
sizes of flows: count-min (CM) sketch [6], conservative-update (CU)
sketch [11], and counter sum estimation method (CSM) sketch [18].
Their data structures are the same: each of them consists of d arrays
of counters, and each array has w counters, as shown in Figure
1. We represent the ith array of each sketch with Ai and the jth

counter of this ith array with Ai [j]. Each array Ai is associated
with a hash function hi (.).
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Figure 1: Structure of CM, CU, and CSM sketches.
Recording: The algorithm first obtains the flow ID f of the packet
and computes thed hash functionshi (f ), whichmap f tod counters
A0[h0(f )%w]...Ad−1[hd−1(f )%w]. Then the CM sketch increments
all hashed counters by 1; the CU sketch increments the smallest
hashed counter(s); the CSM sketch increments one of the hashed
counters randomly.
Querying: To respond to a query with ID f , the sketching tech-
nique computes the d hash functions and retrieves the d counters.
The CM and CU sketches report the value of the smallest counter
as the size of the flow. The CSM sketch sums the values of the d
hashed counters and subtracts a noise value from it.

2.2 Sketches to Estimate Top-k Flows
Top-k flows refers to the problem of identifying the k flows with the
largest number of packets, and estimating the sizes of each of these
top-k flows. The commonly used approach to recording top-k flows
is a CM sketch with a min-heap [5]. Each node in the min-heap has
two fields: a flow ID and a counter.
Recording: The algorithm inserts the packet with flow ID f into
the CM sketch. If the value of the smallest counter is larger than
the counter in the root node, the algorithm checks if f is in the min-
heap. If the answer is yes, the algorithm increments the counter of

that node by 1; otherwise, it deletes root node and inserts a new
node with flow ID f and sets its counter equal to the estimate of
the size of f calculated by the CM sketch.
Querying: To answer a query about the top-k flows, the algorithm
returns all flow IDs in the min-heap along with their corresponding
counter values.

2.3 Sketches to Estimate the Number of Flows
In this paper, we focus on the optimization of the FM sketch for
flow number estimation. The FM sketch is comprised of d bitmaps.
Each bitmap has w bits. As shown in Figure 2, we represent the
ith bitmap with Ai and the jth bit of this bitmap with Ai [j]. Each
bitmap Ai is associated with an independent hash function hi (.).
Specifically, the hash function used in the FM sketch hi (.) maps
half of all flow IDs to bit 0 (i.e., LSB) of the ith array, a quarter to
bit 1, and so on.
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Figure 2: Structure of the FM sketch.

Recording: For each arriving packet, the algorithm of FM sketch
computes the d hash functions hi (f ) and sets the bits Ai [hi (f )%w]

to 1.
Querying: Let Li represent the position of the rightmost zero in
the ith array. We call Li the low-bit of the ith array. To answer the
query about the number of flows at any point in time, the algorithm
of the FM sketch returns 1.2928 × 2

1
d
∑d−1
i=0 Li as an estimate.

There are also many other sketch works for network measure-
ments, please refer to the literature [8–10, 23–25].

3 MACHINE LEARNING FRAMEWORK
3.1 Sampling
As the rate at which the traffic passes through a measurement
point (such as a switch) can be very fast, the sketches for flow-level
metrics become “full” in seconds, and have to be sent to a remote
server for storage. These remotely stored sketches are then used for
answering queries. To incorporate the characteristics of network
traffic that generated any given sketch, we employ sampling and
use only a small percentage of all packets to generate the models.
Let P represent the set of flow IDs of all packets that generate
a given sketch and let S represent the set of flow IDs sampled
from P. Note that if n sampled packets have a flow ID f , then that
flow ID will appear in the sampled set S n times. In other words,
the sampled set S is essentially a multi-set. In our framework,
the network manager can specify the sampling rate based on the
available resources. To keep our implementation fast, we choose
to sample packets, not flows. To achieve a sampling rate of 1 in λ
packets, we save the header of one packet after every λ − 1 packets,
irrespective of packet’s flow ID. A higher sampling rate, obviously,
leads to higher estimation accuracy.
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3.2 Machine Learning
Next, we build a relatively small sketch, using only the packets
in S. We call the resulting sketch learning sketch, as shown in
block “Building learning sketch” in Figure 3. To build the learning
sketch, there are two options: (1) build it at the switch and send it
to the server along with the regular sketch, (2) send packet headers
directly to server and build learning sketch there. Both approaches
are fine and the choice depends on the available computational
resources at the switch and the bandwidth between the server and
the switch.

Next, as shown in block “Feature Extraction, Training set genera-
tion” in Figure 3, we extract appropriate features from the learning
sketch to build the adaptively build the theoretical model. The
features that we extract depend on the flow-level metric being
measured, and naturally are different for different metrics. In the
next section, we will describe these features for three metrics. The
ground truth for training comes from S.

Using the learning sketch and training samples, we train a ma-
chine learning based theoretical model, as shown in block “Training”
in Figure 3. As the training samples are drawn from the same net-
work environment as the traffic being monitored and the learning
sketch is built using these samples, they follow the same distribu-
tion as the whole traffic. As a result, the machine learning models
reflect a mapping from the current traffic distribution to the metrics
of interest, hiding all the complicated logics in the parameters of the
model. We argue that although we need to design features and ma-
chine learning model for every kind of sketch, this framework still
significantly reduces the designers’ labor. The designers do not need
to worry about different network environments any more. Further-
more, designing features and machine learning model is usually just
picking from what features and models you have, which is much
simpler than designing a new sketch algorithm. Finally, as shown
in block “Querying” in Figure 3, using the regular sketch along with
this machine learning based theoretical model, the framework is
now ready to answer any queries. The block “Querying” in Figure
3 represents the process of answering the queries. Next, we present
three case studies to show how we apply our framework to existing
sketches.

4 CASE STUDIES
4.1 Estimating Flow Sizes
For flow size estimation, we started with the intuition that the
flows for which the estimation error is already acceptably small
do not need further improvements. It is the flows for which the
estimation error is high that need further improvement and where
machine learning can help. We name such flows that can experience
high estimation error as error-prone flows. We observed that for

the majority of such flows, the smallest counter value v1 is much
smaller than the second smallest counter value v2. We only do the
machine learning optimization for error-prone flows.

First, we generate a learning sketch using the packets in the
sampled set S. Next, we traverse through all flow IDs in the hash
table and identify the error-prone flows by comparing the absolute
difference between the values of two smallest hashed counters of
each flow. Then, we use them for training by using each error-
prone flow as a training sample. From our extensive tests on real
traces, we found that the actual size of any given flow is almost a
linear combination of the hashed counters. Therefore, for any given
error-prone flow, the values of its d hashed counters in the learning
sketch serve as the features and the actual values of the packet
counts of the flow, recorded in the hash table, serve as target. We
choose linear regression as our machine learning algorithm. The
advantage of linear regression is its very low computational and
space complexity. Because we observe in Section 6 that a trained
model can be used for a long time, a more delicate model like
support-vector machine [15] or neural network [14] can be used.
We will conduct related researches in our future work.

To respond to a query requesting an estimate of the current size
of a flow, we first check whether this flow is error-prone flow by
comparing the absolute difference between the values of its two
smallest hashed counters in the regular sketch with the threshold θ .
If the flow is not an error-prone flow, then we use the conventional
algorithm of the sketching technique to estimate the size of the
flow. If the flow is an error-prone flow, then we estimate its size by
applying the trained linear regressive model on the values of the d
hashed counters of this flow in the regular sketch.

4.2 Estimating Top-k Flows
Top-k flow estimation suffers from two types of errors, i.e., estima-
tion error and misclassification error. Estimation error in top-k flow
problem is the same as that in the flow size estimation problem. The
misclassification error occurs primarily due to the over-estimation
error of the CM sketch, which causes some flows that actually do
not belong to the top-k flows to be mistakenly inserted into the
min-heap. For the sake of presentation, in this section, we call such
flows mice flows.

To reduce the misclassification error, we leverage the fact that
after the ID of a mice flow along with its currently estimated size
is inserted into a min-heap, its counter is rarely incremented com-
pared to the flows that are correctly identified as among the top-k
flows and entered into that min-heap. Consequently, if we can keep
track of how many times the counter of each flow in the min-heap
is incremented after it is inserted, we can identify the flow IDs in
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the min-heap that are of mice flows. Next, we describe how we
apply our machine learning framework to this problem.

We use all flow IDs in the learning min-heap to generate training
sets for both classification and estimation tasks. However, for each
task, we use different features. For classification task, we choose
to use the values of the d hashed counters of each flow in the
learning CM sketch and the difference between the initial counter
field and the counter field in the learning min-heap as features, and
the ground truth whether this flow ID is correctly inserted into
the learning min-heap or not as class label. For estimation task, we
use the values of the d hashed counters in the learning CM sketch
as the features, and use the actual size of that flow as target. We
use logistic regression as our machine learning algorithm for the
classification task and linear regression for the estimation task.

To answer a query about the top-k flows, for each flow with
ID f in the regular min-heap, we estimate its size by applying
logistic regression to first identify and eliminate any erroneously
inserted flow IDs, and then estimate the sizes for the remaining
flow IDs using linear regression model. Finally, we return the flow
IDs remaining in the min-heap and the corresponding estimated
size.

4.3 Estimating Number of Flows
The FM sketch is accurate only when d is large for estimating the
number of flows. Unfortunately, that requires a large amount of
high-speed memory. This is one of the biggest shortcomings of FM
sketch. With the help of machine learning, we aim to achieve the
required accuracy using a smaller value of d .

Unlike the sketches discussed until now, a single learning FM
sketch only provides one training sample. Consequently, instead of
generating a single learning FM sketch from sampled set S, we first
create multiple subsets of the sampled set S, and then generate a
learning FM sketch from each of those subsets. From each learning
FM sketch, we use the d locations, Li , of low-bits and another d
locations, Hi , of high-bits (a high-bit Hi represents the position of
the leftmost one in the ith array) as features. The target is the actual
exponent part of the query formula of FM sketch. We have already
seen in Section 2.3 that the location of low-bits is a function of the
number of flows, and can thus be used as features. The motivation
behind using the locations of high-bits as features is similar: the
position of the high-bit is also a monotonically increasing function
of the number of flows.

To answer the query about the number of flows at any point
in time, we apply the linear regressive model on the values of d
locations of low-bits and another d locations of high-bits in the
given regular FM sketch and get the exponent part of the query
formula. After that, we use the estimation formula of FM sketch to
estimate of number of flows.

5 IMPLEMENTATION
As shown in Figure 4, there are two parts in our architecture: a
switch and a server. The switch is responsible for generating the
regular sketches and producing the sampled set S.

The server implements and runs the machine learning aspects
and also receives, processes, and responds to the queries. We use
three threads to accomplish these tasks, each of which is boundwith

a CPU core. To receive packets from the switch, we use DPDK [2].
The server contains a memory pool, which is a data structure de-
fined and managed by DPDK and used to store the packets received
from NIC (i.e., flow IDs of the sampled packets as well as the regular
sketches). Furthermore, there are three circular queues (also called
rings). One of these three rings is a hardware (HW) ring dedicated
for receiving packets from NIC, while the other two are software
(SW) rings acting as a pipe to transfer data. These rings are also
data structures defined and managed by DPDK, and are used to
store pointers to the data in the memory pool.

As soon as the switch sends any packet (containing either flow
IDs of sampled packets or a regular sketch), the network interface
card (NIC) stores it in the memory pool and inserts its address-
pointer into the HW ring. We have implemented a thread that is
bound with a CPU core polling the HW ring for packets’ arrival.
Let us call it thread 1. As soon as it receives an address pointer
from the HW ring, it retrieves the corresponding packet from the
memory pool and analyses its contents. If the packet payload is
composed of flow IDs, then the thread 1 inserts its address pointer
into SW ring 1. If it contains a regular sketch, then the thread 1
inserts its address pointer into SW ring 2.

We have implemented a second thread that is bound with a
second CPU core polling the SW ring 1 for packets coming from
thread 1. Lets call it thread 2. As soon as it receives an address
pointer from the SW ring 1, it retrieves the corresponding packet
from the memory pool and based on the sketching technique being
tested, it uses flow IDs in that packet payload to generate learning
sketches, which is then used to train machine learning models
specific to that sketching technique. Every time this thread creates
a new machine learning model, it passes that model to a third
thread, called thread 3, which is bound with a third CPU core. In
addition to receiving the trained model from thread 2, thread 3 also
polls the SW ring 2 for packets coming from thread 1. As soon as
it receives an address pointer from the SW ring 2, it retrieves the
corresponding packet from the memory pool and uses the regular
sketch in that packet along with the model it received from thread
2 to answer any queries with higher accuracy.

6 EXPERIMENTAL RESULTS
Computer Settings:We used two servers, both equipped with 2
Intel CPUs (Xeon E5-2630, v2, 2.60 GHz, 12 physical cores) and
80GB memory, two network interface cards (Intel I340T2/82580,
1Gbps), running Ubuntu 14.04.3 LTS. The first server used DPDK to
send the captured traces from switch-machine to the other server.
This emulates the packets being captured and processed at line-rate.
Traffic Traces: We collected real network traffic traces from a
tier-1 router. We identify flows using the standard 5-tuple. We also
generate synthetic traffic traces containing 10M packets each with
varying skewness according to zipfian distributions. We will use
more real-world datasets like CAIDA [1] in our future work to
further demonstrate the effectiveness of our framework.
EvaluationMetrics:We evaluate the accuracy of sketches in terms
of average absolute error (AAE), average relative error (ARE), and
AAE ratio. Let ri represent the true size of the ith flow, r̂i represent
the estimated size of that flow, and n represent the total number of
flows. Then, AAE is defined as 1

n
∑n
i=1 |r̂i − ri |, and ARE is defined
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Figure 4: Block diagram of the implementation of our machine learning framework.

as 1
n
∑n
i=1

|r̂i−ri |
ri . AAE highlights the accuracy of sketches on large

flows, while ARE highlights the accuracy on small flows. AAE
ratio is defined as the ratio of the AAE achieved by the sketch
with machine learning to the AAE achieved by the sketch without
machine learning.
Parameters Selection: In all our experiments, we allocate a fixed
1 Mbit memory to all sketches. We chose to use d = 4 in all our
experiments. The size of each counter for sketches is 16 bits. We
measured the AAE achieved by CM, CU, and CSM augmented with
machine learning with sampling rates varying from 1 in 5 packets to
1 in 1000 packets. We observe that the improvement by increasing
the sampling rate from 1 in 5 packets to 1 in 100 packets is very
nominal. Therefore, in all our subsequent experiments, we use a
sampling rate of 1 in 100 packets.

6.1 Evaluation for Flow Size Estimation
Training Frequency: Next, we determine the frequency at which
one should retrain the machine learning model for optimum im-
provement in accuracy. Figure 5 plots the AAE ratio of “training
once” and “training always” over regular CM sketch. We observe
that training on a decent amount of data collected is enough to
give good accuracy for the next hour. Consequently, in practice, the
machine learning based training will only be an infrequent process
and will not use a large amount of CPU, bandwidth, and memory
of a switch/router.
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Figure 5: Training once vs. training always.

Evaluation with CM Sketch As shown in Figure 6, the AAE ratio
of CM sketch with machine learning across individual flows lies in
the range [2.65, 3.31] with a mean of 2.95.
Evaluation with CU Sketch As shown in Figure 7, the AAE ratio
of CU sketch with machine learning across individual flows lies in
the range [2.04, 2.22] with a mean of 2.13.
Evaluation with CSM Sketch As shown in Figure 8, the AAE
ratio of CSM sketch with machine learning on different datasets
lies in the range [10.68, 12.42] with a mean of 11.47.
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Figure 6: AAE of CM sketches
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Figure 7: AAE of CU sketches
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Figure 8: AAE of CSM sketches

6.2 Evaluation for Top-k Flow Estimation
Our experimental results show that our classification scheme cor-
rectly identifies over 80% of flows that are actually not among top-k
flows but are incorrectly inserted into the min-heap. We observed
from our experiments that when using different 10-minute net-
work traces, the number of such flows erroneously inserted into
the min-heap lied in the range of 8 to 27. Figure 9 plots the average
of the relative errors between the actual sizes of such flows and
their corresponding sizes stored in the min-heap. We observe from
this figure that these AREs are very large, showing that these flows
indeed are not top-k flows.

Our experimental results show that the AREs of CM_Heap_ML
for the top 1000 flows are 14.89 to 202.15 times smaller than the
AREs of CM_Heap for the corresponding flows with a mean of 75.36.
Our experimental results also show that the AAEs of CM_Heap_ML
for the top 1000 flows are 1.11 to 2.59 times smaller than the AAEs of
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CM_Heap for the corresponding flows with a mean of 1.75. Figures
10 and 11 plot the AREs and AAEs, respectively, of CM_Heap and
CM_Heap_ML.
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Figure 10: ARE for the Top-k flows
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Figure 11: AAE for the Top-k flows

6.3 Evaluation for Flow Number Estimation
Our experimental results show that the relative errors (REs) of the
FM_ML sketch are up to 1128.4 times smaller than the correspond-
ing REs of FM sketch with a mean of 117. Figure 12 plots the REs of
FM and FM_ML sketch in 10 randomly chosen such traces of 10M
packets. We clearly observe from this figure that machine learning
significantly reduces the RE of the FM sketch.
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Figure 12: RE comparison

7 CONCLUSION
In this paper, we proposed a machine learning framework to reduce
the dependence of sketches on network traffic characteristics, which
in turn improves their accuracy. We take several sketches that are
currently used to estimate flow sizes, top-k flows, and number of
flows and apply our framework to them. Through extensive evalua-
tion, we showed that our generalized machine learning framework
enables us to reduce the error rates of existing sketches by up to
202 times. We hope that this work would spark more research in
the area of automating the sketching techniques.
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