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Abstract— The Sketch is a compact data structure useful for
network measurements. However, to cope with the high speeds
of the current data plane, it needs to be held in the small on-
chip memory (SRAM). Therefore, the product of the counter size
and the number of counters must be below a certain limit. With
small counters, some will overflow. With large counters, the total
number of counters will be small, but each counter will be shared
by more flows, leading to poor accuracy. To address this issue,
we propose a generic technique: self-adaptive counters (SEAD
Counter). When the value of the counter is small, it works as a
standard counter. When the value of the counter is large however,
we increment it using a predefined probability, so as to represent
this large value. Moreover, in the SEAD Counter, the probability
decreases when the value increases. We show that this technique
can significantly improve the accuracy of counters. This technique
can be adapted to different circumstances. We theoretically
analyze the improvements achieved by the SEAD Counter.
We further show that our SEAD Counter can be extended to
three typical sketches and Bloom filters. We conduct extensive
experiments on three real datasets and one synthetic dataset. The
experimental results show that, compared with the state-of-the-
art, sketches using the SEAD Counter improve the accuracy by
up to 13.6 times, while the Bloom filters using SEAD Counter
can reduce the false positive rate by more than one order of
magnitude.
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I. INTRODUCTION

A. Background and Motivation

NETWORK measurements provide indispensable infor-
mation for congestion control [2], [3], DDoS attack

detection [4], [5], heavy hitter identification [6]–[8] and heavy
change detection [9]. Measuring the size of different flows in
network traffic, known as per-flow size measurements or per-
flow measurements for short, has attracted attentions in recent
years [10]–[13]. Flow identifiers (flow IDs) are selected from
the header fields of packets, such as the five-tuple: source IP
address, source port, destination IP address, destination port,
protocol. Flow size is defined as the number of packets in a
flow. Flow volume is defined as the number of bytes in the
flow.

As the line rate can be high, e.g., 10Gbps, 40Gbps, it is
challenging to perform per-flow measurements at line rate.
To achieve high processing speed, the data structure should
be small enough to be stored in the on-chip memory, such
as a Block RAM in FPGA or ASIC chips, or the caches of
CPU or GPU chips. However, the size of on-chip memory is
very limited (usually less than 20MB [14]–[17]). This means
that it is almost impossible to keep one counter for each flow
to record the flow size if there comes large number of flows.
For example, for the datacenter trace [58], we found there
were about 8M flows when counting 30M packets. While for
the CAIDA trace, there are about 1.5M flows when counting
30M packets. To achieve memory efficiency, various sketches
(e.g., sketch of CountMin (CM) [18], Conservative Update
(CU) [19] and Count (C) [20]) allow counters to be randomly
shared by multiple flows, inevitably incurring errors.

In real network traffic, it is well known that the flow
size/volume distribution is highly skewed [13], [19], [21]–[26].
Specifically, most flows are very small in size, often known
as mouse flows; while a few are very large, often known as
elephant flows. As elephant flows are typically more important
than the small ones, the size of each counter needs to be large
enough to store the largest flow. Further, in many practical
scenarios, one does not have any idea of the approximate
flow size of elephant flows beforehand. Given the limited
size of on-chip memory, if we use large counters, the number
of counters will be small, and each counter will be shared
by more flows, leading to poor accuracy. In this case, most
counters are mapped by mouse flows, keeping a small value,
and thus their significant bits are wasted. Therefore, if we use
large counters, it will be a waste of memory, and the accuracy
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will be poor. In summary, it is challenging to achieve memory
efficiency in skewed network traffic.

We desire to use many small counters to record the sizes
of both mouse flows and elephant flows, and keep a balance
between memory efficiency and accuracy. The challenge then
becomes how can we set up a compact data structure to keep
track of a large number of flows using limited amount of space.
In this paper, we managed to find a technique to overcome this
challenge by introducing the self-adaptive counters technique
(SEAD Counter).

B. Prior Art and Their Limitations
There are primarily two kinds of algorithms for per-flow

measurements. The first kind is based on sampling [27].
However, recent works [11], [12], [28] pointed out that the
sampling method might lose important information. The other
kind is based on a compact data structure called sketch.
There are three classic sketches: sketches of Count [20],
CM [18], and CU [19]. The CM sketch is the most widely
used one in networking [29]. These sketches share the same
data structure and similar operations. Therefore, we only
present the details of the CM sketch here. A CM sketch
consists of d arrays, each of which is associated with a
hash function, denoted by h1(.) . . . hd(.). The ith array is
represented by Ai. Each array consists of w counters. When
inserting a packet with flow ID e, the CM sketch adds the
packet size of e to the d counters: A1[h1(e)] . . . Ad[hd(e)],
called the d mapped counters in this paper. When querying
item e, the CM sketch reports the minimum value among d
mapped counters: min{A1[h1(e)] . . . Ad[hd(e)]}. Obviously,
the accuracy of the CM sketch will decrease as the number
of counters decreases. However, as each counter needs to be
large enough to accommodate the largest flows, the CM sketch
cannot achieve memory efficiency, as do sketches of C and CU.
To achieve memory efficiency, small counters must be used.

The state-of-the-art named Counter tree [30] uses multiple
layers of small counters, with the counters at the higher layers
used to store the significant bits of the large flows. In this way,
it can improve the memory efficiency. Unfortunately, for each
packet belonging to a large flow (also called elephant flow),
Counter-Tree needs to access all layers, requiring many mem-
ory accesses for each insertion. Achieving memory efficiency
while ensuring fast and sufficient processing speed to keep up
with line rate is therefore very challenging.

The Bloom filter [31] is a space-efficient probabilistic data
structure for representing a set of elements. It has been widely
used to support membership query with an acceptable false
positive rate. Bloom filters have been applied to various fields,
like networking and databases, and achieved great success.
It has three important applications: single set membership
queries, many sets membership queries and estimating the
multiplicities of elements. We refer the reader to several
surveys [32]–[34] for detailed applications.

A Bloom filter is used to tell whether an item belongs
to a set or not. A Bloom filter is an array consisting of
w bits and is associated with k independent hash functions
h1(·), h2(·), . . . , hk(·), whose outputs are uniformly distrib-
uted in the range [1, w]. We denote the i-th bit of the array
with A[i]. To insert an item e, the Bloom filter computes
k hash functions and sets A [h1(e)], A [h2(e)] , . . . , A [hk(e)]
to 1. To query an item e′, it checks whether A [h1 (e′)],
A [h2 (e′)] , . . . , A [hk (e′)] are all 1. If the k positions are all
1’s, then it reports that e is in the set; otherwise, it reports that

e is not in the set. Obviously, a BF never reports e /∈ S if e
actually belongs to S, i.e., it has no false negatives. However,
a BF may report e ∈ S when e actually does not belong
to S sometimes, i.e., it has false positives. The false positive
rate of a BF is so small that it can be negligible in practical
scenarios. For example, fewer than 10 bits per element are
required for a 1% false positive probability, independent of
the size or number of elements in the set [35].

However, the conventional method may lead to a waste of
memory or a huge loss in terms of accuracy. Since we cannot
know the size of the set beforehand, it is impossible to find
an appropriate size for the Bloom filter.

A Bloom filter may be “too large” or “too small” for a given
set, which means that after inserting all the items from that
set, the number of 1’s in the Bloom filter may be too small,
indicating a waste of memory we may achieve the same false
positive rate with much less space. In other words, we may use
too much space for the Bloom filter), or too large, indicating
too many collisions and a drastic drop in accuracy.

Therefore, When we say a Bloom filter is “too large”,
we mean that we only need to represent a small number
of elements, so we don’t have to allocate so much space
for the Bloom filter. When we say a Bloom filter is “too
small”, we mean that we need to represent a large number
of elements, so we have to allocate much more space for the
Bloom filter. The situation of the Bloom filter is the same
as that of the sketches, where we can’t configure a sketch
or a Bloom filter accurately because we don’t know how
many flows (elements) there will be beforehand. Therefore,
we propose SEAD Counter to improve the space efficiency,
which means that we can allocate the same memory size
(the limit amount of memory) as we do w.o. SEAD Counter
while achieving a better accuracy with this space-efficient
probabilistic data structure.

C. Our Solution

Most of the sketches have two shortcomings for skewed
datasets:

1) The different sizes of the counters have to be set
large enough so that they can hold the largest flows in
the stream without overflowing. As memory is limited,
the size of the counters could not be set large enough and
could be like 8-bit or 16-bit. If we set them too large,
there will be too many collisions and a drastic drop in
accuracy. As a consequence, if memory is limited and
the counters could not be set large enough, a lot of bits
are wasted while some counters in the hash table may
overflow.

2) They lack a mechanism to deal with changes of network
workloads. For example, on black Friday, a sketch on a
router near a server of an electronic commerce website
not designed to handle this unusual workload is likely
to fail to handle the load.

In this paper, we propose a generic technique aimed at
making every bit count. Our technique is applicable to all
sketches using counters, and it can be extended to Bloom
filters, too. Recall that the design goal is to achieve both mem-
ory efficiency and fast, sufficient speed. To achieve memory
efficiency, we have to use small counters. To achieve sufficient
and fast processing speed, to make the data structure as easy to
use by real applications, we do not introduce multiple layers,
a common design point in many papers like Counter-Tree [30]
or Pyramid Sketch [36], or change the basic data structure
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of sketches. The challenge is that each small counter has to
be able to represent the size of both mouse and elephant flows.

Our key idea is simple: when a counter is going to overflow,
for each insertion, instead of always increasing it, we increase
it with a predefined probability. When the value of the
counter is small (e.g., is mapped by one or several mouse
flows), we consider it as a normal counter, so as to achieve
high accuracy. By carefully designing the probability setting,
we can use a small counter to represent a very large value
as well. Introducing this probability could incur inaccurate
recording of large values. Fortunately, we prove theoretically
and empirically that the incurred inaccuracy is negligible
compared to the large value of the size of elephant flows.

Based on the above idea, we propose two versions of our
technique: the Static Sign Bits version and the Dynamic Sign
Bits version. Our technique splits each counter into two parts:
(1) sign bits, and (2) counting bits. When the sign bits are all 0,
we increment the counting bits normally; when the sign bits
are non-zero, we increment the counting bits with a probability
calculated by the value of the sign bits. As the number of
bits of each counter is fixed, if we assign more bits as sign
bits, the number of counting bits will decrease. In this case,
the counter cannot accurately record the size of mouse flows.

For the static version, we fix the length of sign bits in
advance, and do not change it during insertions. The short-
coming of the static version is that it is hard to determine
how many bits should be assigned for the sign bits. To address
this, we propose the Dynamic Sign Bits version, which uses
an adaptive method that dynamically adjusts the length of
the sign bits according to the value that the counter needs
to represent. This adaptive method works as follows: we
consider all sequences of 1 bits from the left as sign bits.
The leftmost 0 bit is considered a marker, the split bit, while
others are counting bits. For example, given a counter with
value 11101011, it means the following. The first three bits are
sign bits, representing a value of 3. The fourth bit, 0, the split
bit, splits the sign and counting bits. The last four bits 1011 are
the counting bits. More details about the adaptive methods are
provided in Section III-B.

D. Key Contributions
1) We propose two versions of a generic sketch technique,

static and dynamic. With our technique, sketches can
use small counters to accurately record the sizes of
both elephant and mouse flows, achieving memory effi-
ciency as well as sufficient and fast speed. Besides,
Bloom filters using SEAD Counters can achieve a
higher accuracy. We apply our technique to sketches
of CM, CU and C. We use our counters in Counting
Bloom Filters (CBF) and Variable-Increment Counting
Bloom Filters (VI-CBF). We also use our counter as the
estimator.

2) We conduct a detailed analysis of the adaptive counters
to show their theoretical properties.

3) We carry out extensive experiments, and provide results
on three real datasets and one synthetic dataset, demon-
strating the improved performance of our adaptive
counters.

The rest of the paper is organized as follows. We describe
related work in Section II. The main ideas of the SEAD
Counter are described in Section III. We provide a case study
to show how to apply the SEAD Counter to the CM sketch,
the CU sketch and the C sketch in Section IV. In Section V,

we provide a theoretical analysis for two versions of the
SEAD Counter. In Section VI, we provide experimental evalu-
ations on SEAD Counter, compared with two other estimators
and SEAD Counter sketches, compared to original sketches.
Finally, we conclude in Section VII.

II. RELATED WORK

The idea of estimators was first introduced by Morris in
Approximate Counting [37]. At the price of small errors,
estimators can represent large values with small counters.
In network area, Small Active Counters (SAC) [38] first
adopted this idea and later developed by DISCO [39] to
provide better accuracy. Recently, CEDAR [40] and ICE-
Buckets [41] extended the analysis of the estimation function
in DISCO and include some other estimation techniques to
further improve precision. An alternative to estimators is to use
a variable-length counter encoding, like Pyramid Sketch [36]
and BRICK [42].

For per-flow measurements, two methods exist: sampling
and sketches. The authors in [43] prove that sampling has poor
accuracy, and propose an algorithm to improve it. To improve
the accuracy, various sketches have been proposed, including
the CM sketch [18], the CU sketch [19], the C sketch [20] and
many other advanced techniques such as the A sketch [13],
the CSM sketch [44], the Tug-of-war sketch [45] and its
enhanced version [46], the AMS sketch [47]. Sampling and
sketches methods can be combined with estimators to further
reduce the size of every counter at the expense of precision.

Due to space limitations and the too many various flavours
of related sketches, we only briefly introduce the most typical
estimators and sketches.

We also cover widely used Bloom filters, such as the
standard Bloom Filter (BF) [31], the Counting Bloom Filter
(CBF) [48], and the Variable-Increment Counting Bloom Filter
(VI-CBF).

A. Small Active Counter
For one counter with n bits, the Small Active Counter [38]

divide it into two parts: l-bit exponent part called mode and
k-bit estimation part called A. Using r as the global scale para-
meter, the real value V can be estimated by V̂ = A · 2r·mode.
In its HAC version, DRAM resources can be used to further
improve its accuracy.

B. ICEBuckets
For one counter with n bits to count up to M , ICE-

Buckets [41] relies on an estimation function A : {0, . . . ,
2n − 1} −→ [0, M ], which accepts a symbol l between 0 and
2n − 1 as input and returns an estimation value for it. Using
ε as one parameter, the expression of ICEBuckets’ estimation
function is:

Aε(l) =
(1 + 2ε2)l − 1

2ε2
(1 + ε2)

ICEBuckets proved its expression is optimal. Besides,
ICEBuckets introduces independent counter estimation buck-
ets, where each bucket has its own ε value to achieve
multiple scale in overall data structure. After separating the
flows to different buckets, their optimal estimation functions
are configured according to each bucket’s counter scale.
However, due to complicated expression, its processing speed
is limited.
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C. CU Sketch

The CU sketch [19] has the same structure as the CM sketch,
but its insertion strategy is sacrificing speed for accuracy using
“conservative update”. When inserting a packet e, it only adds
the metric of interest of e to the smallest counter(s) among d
mapped counters. When querying packet e, the CU sketch
reports the minimum value among d mapped counters.

D. C Sketch
The C sketch [20] differs from the CM and CU sketch in

the sense that each array is associated with two hash functions.
Besides d hash functions h1(.) · · ·hd(.), there are additional d
hash functions s1(.) · · · sd(.) mapping each incoming packet
to {+1,−1}. If the result of the second hash function is +1,
then the insertion proceeds as usual. Otherwise, the metric of
interest of the packet will be subtracted from the d mapped
counters. When querying, it will report the absolute value
of the median of {A[hi(key)] × si(key)}i, where i is in
0, 1, · · · , d − 1.

E. Sophisticated Sketches
Many advanced sketch techniques have been proposed

recently [49]–[51]. The augmented sketch (A sketch) [13] is
targeted at improving accuracy by using one additional filter to
dynamically capture packets from heavy-hitters. The A sketch
adds an additional filter (which is actually a queue with k
packets) to an existing sketch T. The A sketch is very accurate
only for those packets in the filter. For the sketch which offload
heavy hitters by one additional structure, like A sketch, we can
combine it with our SEAD counter to both use smaller SEAD
counters for the mouse flows and reduce the error of elephant
flows by the additional structure.

The pyramid sketch [36] automatically enlarges the size of
the d mapped counters according to the current frequency of
the incoming packet, while achieving fast speed.

The Counter-Tree [30] provides a scalable architecture for
per-flow measurements. The key idea of the Counter-Tree is
to rearrange the counter sharing scheme based on the CM
sketch. The authors claim that their 2-D tree structure is able to
work with very limited space. However, in terms of accuracy,
the performance of the Counter-Tree is not as good as the
original CM sketch under the same memory usage. Moreover,
the CM sketch and other typical sketches support the (ID, f)-
insertion where f � 1. The Counter-Tree on the other hand
only supports (ID, 1)-insertions, which makes it unsuitable
for applications such as flow volume measurements.

F. Counting Bloom Filters (CBF)

The Counting Bloom Filter (CBF) suggested by
Fan et al. [48] is a generalization of the BF, in which
each hash entry contains a counter with a fixed size of b bits,
instead of a single bit in the BF.

To insert an element, all the corresponding hashed counters
are incremented by one. Likewise, to delete it, all of its hashed
counters are decremented. To determine if an element e ∈ S,
we check if all of its hashed entries are positive.

Unfortunately, while supporting deletions, CBF also needs
large amounts of memory space, which is often valuable in
networking devices.

G. Variable-Increment Counting Bloom Filters (VI-CBF)

The Variable-Increment Counting Bloom Filter [52],
denoted as VI-CBF, is a generalization of CBF that uses

variable increments to update each entry. When inserting an
element, the counters of VI-CBF are incremented by a hashed
variable increment instead of a unit increment. Then, to query
an element, the exact value of a counter is considered, not just
its positiveness.

They first define a set of possible variable increments D.
Then, for each counter update, they hash the element into a
value of D and use it to increment the counter. Likewise,
to delete an element, they decrement it by its hashed value
in D. Last, to determine if an element e ∈ S, they check in
each of its counters if its hashed value in D could be part of
the sum. If this is not the case in at least one counter, then
necessarily e /∈ S. Otherwise, as for BF and CBF, they state
that e ∈ S, which might be a false positive.

Specifically, k hash functions G = {g1, · · · , gk} are
employed to select k increments from the set D. Note that
D = {v1, v2, · · · , vu} is a set of integers such that all the
sums vi1 + vi2 + · · · + vil

with 1 ≤ i1 ≤ · · · ≤ il ≤ u are
distinct. Thereafter, k hash functions {h1, · · · , hk} map the
element into k cells of VI-CBF.

To query an element e, VI-CBF first checks the k counters
C1 [h1(e)] , · · · , C1 [hk(e)]. If any counter is 0, obviously
e /∈ S. If C1(i) is small, VI-CBF considers the exact values
in both counter vectors. In this case, no more than u elements
are hashed into these cells. Thereafter, VI-CBF can deduce
the employed increments in the value of C2(i). If vgi(e) is
contained in C2 [gi(e)] (i ∈ [1, k]), then e ∈ S with high
probability; otherwise, e /∈ S. Finally, if C1(i) is large,
VI-CBF considers that this cell is not useful and examines
other cells for possibly eliminating the membership of e.
By updating the counters with diverse increments, VI-CBF
effectively distinguishes the elements mapped into a cell.
It was shown that the VI-CBF has a better false positive
rate than the CBF for a fixed number of bits per element
(bpe), although it requires more bits per counter for its smaller
number of counters.

The time complexity for query of CBF is O(k), where k
is the number of hash functions or the number of counters
an element corresponds to. In the case of VI-CBF, for each
counter ci, it checks if (ci − vgi(y)) ∈ (−∞, 1] ∪ [1, L − 1],
where D = [L, 2L − 1]. Therefore, the time complexity is
also O(k).

III. THE SEAD COUNTER TECHNIQUE

In this section, we describe our SEAD Counter
(Self-Adaptive Counters) approach. We propose two
versions of SEAD Counter, a Static Sign Bits version and a
Dynamic Sign Bits version. Inspired by floating-point number
representation, the Static Sign Bits version uses some sign
bits to adjust the magnitude of the counters, enabling the
counters to represent larger values. However, it is hard to
determine an appropriate length for the sign bits so that
mouse flows can be accurately recorded. To overcome the
weakness of the static version, we further design a dynamic
version.

Some notations used in this section are shown in Table I.

A. Static Sign Bits Version
Rationale: Let n be the counter size, i.e., the number of bits

in a counter. To achieve memory efficiency, we need to use
fine-grained counters, i.e., small counters (e.g., n = 8). The
capacity of the counters, i.e., the maximum value that counters
can represent, is fixed to 2n-1. However, when a counter is
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TABLE I

SYMBOLS USED IN THE PAPER

Fig. 1. Example of SEAD Counter with Static Sign Bits, where n = 8
and s = 3. To insert a pair (e, 1), the counting part is increased by 1 with
probability 1

4
. If the counting part overflows, we increase the sign part by 1,

and get a new expansion parameter γ[3] = 8.

mapped by too many flows, especially large ones, the value
of the counter will easily exceed 2n-1.

Our technique is inspired by, but different from the encoding
style of floating-point numbers. In a typical floating-point
representation, the value can be calculated using the following
three parts: 1) a sign digit indicating the value to be positive
or negative. 2) exponent digits which represent an integer that
controls the magnitude of this representation. 3) significant
digits that carry the value related to its measurement reso-
lution. Similarly, in our technique, we also split a counter
into two parts: a Sign Bits part (sign part for convenience)
and a Counting Bits part (counting part for convenience). The
counting part functions as the significant digits, while the sign
part functions as the exponent digits. Specifically, for each
possible value of the sign part, we pre-define a corresponding
integer indicating how many times the counting part should be
expanded. We call this pre-defined array the expansion array.

Self Adaptive Counter (SEAD Counter): Our technique
is called Self-Adaptive Counters (SEAD Counter). Next we
show the data structure and operations of the SEAD Counter.

Data Structure: For the SEAD Counter, it has a s-bit
sign part and a (n-s)-bit counting part as shown in Figure 1.
We denote the expansion array as γ[0], γ[1], · · · , γ[k − 1],
where k = 2s. For example, γ[i] = 2i. After setting up all the
above parameters, the capacity of the Static Sign Bits version
of the SEAD Counter is Cstatic(n, s) =

∑2s−1
i=0 (γ[i]× 2n−s).

Here, we define the capacity of the SEAD counter as the
expected number of increments it can take before exceeding its
maximal value. Due to over-sampling problem, we should set
the expansion array to make the capacity slightly higher than
the number of increments we want to support. Besides, in the
extreme case where over-sampling happened, we just return
the capacity value, which is the maximum possible value that
can be represented by our counter.

Insertion: We show the steps of how to add 1 to an SEAD
Counter. The procedure to update SEAD Counters with larger
values can be seen in Algorithm 1.

Step 1: In an SEAD counter, we get the sign part s0,
the counting part c0, and the value γ[s0] from the expansion
array.

Algorithm 1 read and update Functions of SEAD
Counters

read: (the value resided in the counter: l, an expansion
array: γ)

1: cl = l
2: if l < 0 then
3: l̃ + 1 →| cl, thus cl is the two’s complement of l
4: s0: value of the sign part in cl

5: c0: value of the counting part in cl

6: c = stage[s0 − 1] + (γ[s0] × c0)
7: if l < 0 then
8: −c →| c
9: return c

update: (the value resided in the counter: l, a value v,
an expansion array γ)

1: if read(l, γ) +v > Cdynamic(n) then
2: 2n−1 →| l (set l to the maximum in the counter)
3: else
4: cl = l
5: if l < 0 then
6: l̃ + 1 →| cl, thus cl is the two’s complement of l
7: s0: value of the sign part in cl

8: c0: value of the counting part in cl

9: q = v
γ[s0]

, r = v%γ[s0]
10: if r �= 0 then
11: p: a random number in [0, 1]
12: if p < r

γ[s0]
then

13: l + 1 →| l
14: if 0 < q < stage[s0] − c0 then
15: l + q →| l
16: else
17: v′ = v − (stage[s0] − c0) × γ[s0]
18: stage[s0] →| l
19: update(l, v′, γ)

Step 2: Since γ[s0] indicates how many times the counting
part should be expanded, we first calculate 1

γ[s0]
, and add 1 to

the counting part with probability 1
γ[s0]

.

Step 3: If the counting part reaches 2n−s, we increase the
sign part by 1, and set the counting part to zero.

Query: For an SEAD counter C, we calculate the value
represented by C as follows:

1) First, we get the value of the sign part s0 and the value of
the counting part c0. Then, we find γ[s0] from the expansion
array and another value stage[s0] from the stage array. The
stage array is pre-computed using the following formula (We
assume γ[j] = mj in the stage expression to contrast static
and dynamic version better):⎧⎪⎨⎪⎩

stage[0] = 0,

stage[i] = 2n−s ×
i−1∑
j=0

γ[j] =
2n−s(mi − 1)

m − 1
, i > 0 (1)

2) The value represented by C can be calculated with the
following formula:

value(C) = c0 × γ[s0] + stage[s0].

= c0m
s0 +

2n−s(ms0 − 1)
m − 1

(2)
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Fig. 2. Structure of Dynamic Sign Bits SEAD Counter.

The problem of the Static Sign Bits version is that, since we
do not know the size of the mouse flows, we cannot determine
an appropriate length for the counting and sign parts. Specif-
ically, when the sign part is zero, the flow size is accurately
recorded. When we use a large sign part, the counting part will
be shortened, and thus the counter may not accurately record
the mouse flows.

B. Dynamic Sign Bits Version

Rationale: Given a fixed counter size, to address the issue
of the space taken by a fixed-length sign part, we can use
an adaptive method to dynamically adjust it. The length of
the sign part is initialized to 0. Except for the split digit, all
other bits are used for counting. As the value represented by
the counter becomes larger, we increase the length of the sign
part dynamically. In this way, we can accurately record mouse
flows, while being able to deal with elephant flows.

Data Structure: An n-bit Dynamic Sign Bits version SEAD
Counter has three parts: 1) a sign part whose length ls is made
up by ones, 2) a split digit which is the leftmost zero digit,
3) a (n-ls-1)-bit counting part. We create an expansion array
γ[0], γ[1], · · · , γ[n−2]. After setting up the above parameters,
the capacity of the Dynamic Sign Bits version SEAD Counter
is Cdynamic(n)

∑n−2
i=0 (γ[i] × 2n−i−1).

Insertion: The insertion process of the dynamic version of
the SEAD Counter is similar to the static version, except for
two differences: (1) In the dynamic version, the value of the
sign part, i.e., s0, is equal to the number of ones in the sign
part; For example, the value of the sign part in“111011” is 3.
(2) In the dynamic version, when the counting part overflows,
we turn the split digit to 1, and set the bits of the counting
part to all zeroes. By doing this, the length of the sign part is
increased by 1, the split digit is moved right by 1 bit, and the
counting part is shortened by 1 bit.

Query: The query process of the dynamic version of the
SEAD Counter is similar to the static version. To calculate the
value of an SEAD Counter with Dynamic Sign Bits, the first
step is also to get s0 and c0 from the counter, and read the
value γ[s0] and stage[s0] from the expansion and stage arrays,
respectively. The two differences are that s0 is the length of
the sign part, and the stage array is computed through the
following formula:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

stage[0] = 0

stage[i] =
i−1∑
j=0

(
γ[j] × 2n−j−1

)
=

{
i · 2n−1, m = 2, i > 0
2n−1(( m

2 )i−1)
m
2 −1 , m �= 2, i > 0

(3)

The second step is the same as the static version. The
value represented by a dynamic version SEAD Counter can
be calculated using the first equality of Formula 2.

Even if there can be over-sampling, the n-bit SEAD Counter
with Dynamic Sign Bits can increment 2n times, which is the
same as the normal counter.

Fig. 3. An example of SEAD Counter with Static Bits Version, where n = 8
and s = 3. To increase the counter by 148, the counting part will overflow.
We increase the sign part by 1, and get a new expansion parameter γ[3] = 8.

C. Insertion to the Counters With Larger Values

We show the steps of how to add v to an SEAD Counter.
Step 1: In an SEAD counter, we get the sign part s0,

the counting part c0, and we check the value γ[s0] in the
expansion array. Since γ[s0] indicates how many times the
counting part should be expanded, we first calculate v

γ[s0]
,

getting a quotient q and a remainder r.
Step 2: We compare q with g = (2n−s − c0), and there are

two cases:
1) q < g: This means the SEAD Counter can hold the

value without changing the sign part. We only increase
the counting part by q, i.e., c0 + q →| c0, r →| r and
s0 →| s0.

2) q � g: We first increase the sign part by 1, i.e., s0+1 →|
s0, and set the counting part to zero, i.e., 0 →| c0. Then,
we calculate (q−g)×γ[s0]+r

γ[s′
0]

, and get a new quotient q′

and a new remainder r′. We let r′ →| r, q′ →| q and go
back to Step 1.

Step 3: We further increase the counting part by 1 with
probability r

γ[s0]
. If the counting part is increased to 2n−s,

we increase the sign part by 1 and set the counting part to
zero.

IV. CASE STUDIES

To further illustrate the generality of the SEAD Counter
technique, in this section, we show how to apply the SEAD
Counter to the sketches of CM [18], CU [19] and C [20].
We further extend our counters to CBF and VI-CBF. Two
functions of the SEAD Counters, read and update, are shown
in Algorithm 1.

A. Application to the CM Sketch
In the CM sketch, all normal counters are replaced by

the SEAD Counters. After locating d counters using d hash
functions, the insertion procedure is done by calling the
“update” function of the corresponding SEAD Counter. The
query function is done by reporting the minimum value of
“read” by all corresponding SEAD counters.

B. Application to the CU Sketch
The CU sketch is similar to the CM sketch but with

a different update technique called “conservative update of
counters”. In a CU sketch, the insertion procedure is done
by calling the “update” function on the smallest counters in
the SEAD Counter. The query process is the same as for the
CM sketch.

C. Application to the C Sketch
The C sketch consists of an array with t× k counters. One

important feature of the C sketch is that it requires two sets
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of hash functions h[1] · · ·h[t] and g[1] · · · g[t], where h[i] :
[0, n] → [0, k] , g[i] : [0, n] → {−1, 1}. Negative values can
occur in the counters, so the first bit of each counter should
be the sign bit. When inserting a packet, the sketch calls the
“update” procedure of the SEAD Counter to add the value
to the corresponding counter. The query function is done by
reporting the median value of “read” by all corresponding
counters.

Since we may add a negative number to the counters in
the C sketch, in the two functions, i.e., “read” and “update”,
we use the leftmost bit of a SEAD Counter to indicate whether
the counter is positive or negative. As shown in Algorithm 1,
the “read” function takes a counter c and the expansion array
γ as input, and outputs the value represented by the counter.
The “update” function takes a counter c, an increment value c,
and the expansion array γ as input.

D. Application to CBF and VI-CBF
CBF has essentially the same structure as the CM sketch,

so the “update” and the “read” functions behave the
same. However, they are used differently and therefore sized
differently.

VI-CBF [52] works in the same model as CBF, which
means that the same element may be inserted more than
once. VI-CBF differs from CBF in that the increments and
decrements are variable. While all the corresponding hashed
counters are incremented by one in CBF when inserting an
element, in the case of VI-CBF, all the corresponding hashed
counters are incremented by a certain hashed value, which is
previously defined as a set of possible variable increments D.
For the same element, the corresponding hashed counters are
incremented with the same corresponding hashed value. For
CBF, we check in each of its counters if its hashed value is
positive. For VI-CBF, we check in each of its counters if its
hashed value in D could be part of the sum. We adopt the
scheme proposed in [52], which uses variable increments but
only relies on a single variable-increment counter per entry,
without the additional counter that indicates the number of
hashed elements. Specifically, in each array entry, the counter
is updated using variable increments selected from a set D =
{v1, v2, . . . , v�}. We use again two sets of k hash functions,
H = {h1, . . . , hk} and G = {g1, . . . , gk}. Upon insertion,
at each corresponding array position hi(x), the counter is
incremented by the element vgi(x) of the set D. Likewise, upon
deletion, the counter hi(x) is decremented by vgi(x) ∈ D.

When an element is inserted, we use the “update” function
in Algorithm 1 and increment the counter with the correspond-
ing value. When we want to query whether the element y
belongs to the set, we see whether the values of the k hashed
entry of y can be the sum of the increment. Specifically, let
y be an element whose i-th hash function hi(y) hashes into
an entry of value ci. If there exists i such that

(
ci − vgi(y)

) ∈
(−∞,−1]∪[1, L−1], then y /∈ S. If there is no such i, we say
that y ∈ S. Here the value ci is c in Algorithm 1, which is
derived by the “read” function.

V. THEORETICAL ANALYSIS

In this section, we analyze the improvements that using
SEAD Counter for a given amount of memory. We also
compare the performance of the Static Sign Bits and the
Dynamic Sign Bits version. The result shows that the Dynamic
Sign Bits version of SEAD Counter solves the problem of

errors introduced at an early stage with the Static Sign Bits
version SEAD Counter.

A. More Capacities
Suppose a counter has n bits. Let’s calculate the capacities

of a regular and a self-adaptive counter. The capacity of a
regular counter is 2n. In the Static Sign Bits version of the
SEAD Counter, the capacity is raised to

∑2s−1
i=0 (γ[i]× 2n−s),

where s is the length of the sign part. In the Dynamic Sign Bits
version, the capacity is

∑n−2
i=0 (γ[i]× 2n−i−1). For simplicity,

we choose γ[i] = mi as an example: with k bits, for the Static
Sign Bits version to reach a capacity of 2n, we have:

2n = 2k−s × (
m2s − 1
m − 1

)

Since k must be an integer, we can solve:

k = n + s − �log2(
m2s − 1
m − 1

)	 (4)

For example, if we set the length of the sign part to s = 2,
and the expansion array to γ[i] = 4i, the resulting space will
be reduced to k = n − 4. That means that using the static
version of SEAD Counter technique, four bits can be saved to
reach the same capacity as a regular counter.

If we set the expansion array to γ[i] = 2i in the Dynamic
Sign Bits Version, we have:

2n = 2k−1 × (k − 1)

For example, if we choose n = 16, then we have k = 13
and 3 bits can be saved.

For the Dynamic Sign Bits Version to reach a capacity of
2n with m �= 2, we have:

2n = 2k−1 × (m
2 )k−1 − 1

m
2 − 1

, m �= 2

If we set the expansion array to γ[i] = 4i, we have:

k = 
n

2
� + 1 (5)

With the Dynamic Sign Bits Version, almost half of the
space can be saved to reach the same capacity as for a regular
counter.

B. Upper-Bound of Relative Error
To evaluate the accuracy of the SEAD Counter, we prove

the unbiasness of SEAD Counter and give the analysis of its
variance and relative error.

1) unbiasness: In each stage[s], the probability of incom-
ing packet added to the SEAD Counter remains the same:
p = 1

γ[s] . Suppose there are t packet arrivals in this stage,
we define X as the increments of the actual value stored in
the counter, and we define V (X) as the increments of the
represented value of X . X follows a Binomial distribution:
X ∼ B(t, 1

γ[s] ). Deriving the expectation of V (X) is not
difficult:

E(V (X)) = E(γ[s] × X)
= γ[s] × E(X)

= γ[s] × t

γ[s]
= t

This means that increments are unbiased in each stage, and
the counter estimation is thus unbiased.
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2) variance and relative error: we discuss the quality of
estimation mainly in terms of the root mean squared relative
error (RMSRE), or relative error in short. For each stage[s],
their increments and decrements processes can be consid-
ered independent. Then using the same notation in 1), for
stage[s],

var(V (X)) = E(V (X)2) − E2(V (X))

= E(γ2[s] × X2) − t2

= γ2[s]E(X2) − t2

= γ2[s](V ar(X) + E2(X)) − t2

= γ2[s](
t(γ[s] − 1)

γ2[s]
+

t2

γ2[s]
) − t2

= t(γ[s] − 1)

We define Ŷ as the random variable representing the esti-
mation value of a flow after Y packets have arrived. The root
mean square relative error (RMSRE) is

RMSRE[Y ] =

√√√√√E

⎡⎣( Ŷ − Y

Y

)2
⎤⎦

We give a similar proof as in [41]. Let Ql(Y ) be the
probability to have a value l resided in the counter given
that exactly Y packets have arrived at the flow. As mentioned
before, the estimator is unbiased, thus∑

l

Ql(Y )V (l) = Y. (6)

In order to calculate the relative error, we should first find
the variance of the estimation value. The Static Sign Bits
version can accurately record [0, 2(n−s−1)], while the Dynamic
Sign Bits version can accurately record [0, 2n−1], where n is
the number of bits in a counter and s is the length of the sign
part in the static version. Therefore, when Y ≤ 2(n−s−1) for
Static Sign Bits version and Y ≤ 2(n−1) for Dynamic Sign
Bits version, the relative error is also 0. For greater values,
we already know its mean, so let us find

E

[
Ŷ 2
]

=
∑

l

Ql(Y )V 2(l).

We first compute E

[
ˆ(Y + 1)

2 − Ŷ 2
]
. If the counter’s

value is l and it’s at stage sl, when a packet arrives
the counter’s value is incremented with probability 1

γ[sl]
or

remains unchanged with probability 1 − 1
γ[sl]

. Therefore,

E

[
ˆ(Y + 1)

2 − Ŷ 2
]

=
∑

l

(
V (l + 1)2 − V (l)2

) · 1
γ[sl]

Ql(Y )

=
∑

l

(V (l + 1) + V (l))Ql(Y )

=
∑

l

(2V (l) + γ[sl]) Ql(Y )

=
∑

l

2V (l)Ql(Y ) + γ[sl]Ql(Y )

= 2Y +
∑

l

γ[sl]Ql(Y ) (7)

Therefore,

E

[
Ŷ 2
]

=
Y −1∑
i=0

(
E

[
(�i + 1)2

]
− E

[
(̂i)2
])

+ E
[
0̂2
]

=
Y −1∑
i=0

(2i +
∑

l

γ[sl]Ql(i))

= Y (Y − 1) +
Y −1∑
i=0

∑
l

γ[sl]Ql(i) (8)

We define the expected counter’s value of i as li. As the
stage value remain constant in a relative long interval, we can
assume li’s stage is approximately no larger than sli + 1.
Suppose ak = γ[sli + 2 − k], bk = Ql(i), k = 2, · · · , sli +
2, a1 = γ[sli + 1], b1 =

∑i
l=li

Ql(i), we can know ak is

nonincreasing and nonnegative,
∑k

l=1 Ql(i) ≤ 1. Then using
Abel’s inequality,

E

[
Ŷ 2
]

= Y (Y − 1) +
Y −1∑
i=0

∑
l

γ[sl]Ql(i)

� Y (Y − 1) +
Y −1∑
i=0

γ[sli + 1] × 1

≤ Y (Y − 1) + Y (γ[slY + 1]) (9)

Hence, the variance is

V

[
Ŷ
]

= E

[
Ŷ 2
]
− E

[
Ŷ
]2

≤ Y (γ[slY + 1] − 1) (10)

and the relative error is

RMSRE[Y ] =

√√√√V

[
Ŷ
]

Y 2
≤
√

(γ[slY + 1] − 1)
Y

(11)

As γ[slY ] is relevant with Y , to show RMSRE[Y ] is
bounded, we choose γ[i] = mi, m = 2 under Dynamic Sign
Bits Version as an example to simplify the analysis. Suppose
slY = i, from (3),

RMSRE[Y ] ≤
√

(γ[slY + 1] − 1)
Y

≤
√

2i+1 − 1
i × 2n−1

≤
√

1
i × 2n−i−2

(12)

As RHS of (12) is nondecreasing, we know when Y gets
bigger, its RMSRE value becomes larger. However, it’s still

bounded by
√

1
n−2 (when i = n−2). When m �= 2, the upper

bound is similar:

RMSRE[Y ] ≤
√

(γ[slY + 1] − 1)
Y

≤
√√√√ mi+1 − 1

2n−1 × ( m
2 )i+1−1

m
2 −1

≤
√

m

2n−i
(13)

C. Advantage of Dynamic Sign Bits Version
In real applications, the first entry of the expansion array

γ[0] is always set to 1, which means that the SEAD Counter
will accurately record values when the sign part is 0. Since
there is enough memory to record accurate values when
they are small, we shouldn’t do worse than normal counters
when counting small values. If we use γ[0] greater than 1,
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the counter values are inaccurate even for small values, which
means that the result is worse than that of normal counters
and this is not acceptable. The Static Sign Bits version can
accurately record [0, 2(n−s−1)], while the Dynamic Sign Bits
version can accurately record [0, 2n−1], where n is the number
of bits in a counter and s is the length of the sign part in the
static version.

If we want these two versions to have the same number of
stages, then 2s ≈ n − 1. Typically, for a counter of 8 bits,
n = 8 and s = log2(8 − 1) ≈ 3. Then, stage[1] = 16 for the
Static Sign Bits version, and stage[1] = 64 for the Dynamic
Sign Bits version. A larger stage[1] enables the Dynamic Sign
Bits version to have a larger exact counting range. As a result,
it is more accurate when recording the size of mouse flows.

At early stages of the SEAD Counter, when it is more likely
to get accurate results, there is more capacity in the Dynamic
Sign Bits Version than in the Static Sign Bits version. At later
stages of the SEAD Counter on the other hand, when it is
more likely to get inaccurate results, there is less capacity
in the Dynamic Sign Bits Version than in the Static Sign Bits
version. This property in terms of accuracy is a way to explain
the advantage of the Dynamic Sign Bits Version of the SEAD
Counter.

D. Computational Model of SEAD Counter on Sketches

For a vector a with dimension n, we define its current state
at time t as [a1(t), · · · , ai(t), · · · , an(t)]. Initially, a is set
to 0 and ai(t) is 0 for all i. The t-th update to the individual
entries of the vector is presented as pair (it, ct), which means,

ait(t) = ait−1(t − 1) + ct

ai′t(t) = ai′t−1
(t − 1) i′t �= it (14)

In some cases, cts are always strictly positive, which means
the entries will only increase. we call this model as cash
register model. In other cases, ct could be positive or negative.
We call it as turnstile model. Under the turnstile model, if all
ai(t)s are non-negative for all time, we call this case as
non − negative case; if ai(t)s may be negative, we call this
case as general case. Different models correspond to their
specific scenarios and therefore figuring out the models sketch
can be applied is important. For example, CM sketch works
in the non-negative turnstile model while C sketch works in
the general turnstile model.

When applying SEAD Counter on sketches, it will introduce
its new error to the sketches. Therefore, we should deter-
mine when replacing counters with estimators, what kinds of
computational model each sketch works on. For estimators,
when we delete some elements, we will introduce probabilistic
updates. After certain times of deletion, the error may not
be proportional to the norm of the size-vector. Therefore,
estimators don’t satisfy the requirements of turnstile model.
As for estimators in the cash register model, their error
introduced by insertion is bounded by the norm of the size-
vector. Therefore, we conclude estimators work in the cash
register model.

For the error bounds of SEAD Counter on CM sketch,
we give a similar theorem like Theorem 1 in [18]. To simplify
the analysis, we only consider the Dynamic Sign Bits Version
here.

Theorem 1: Let ‖a‖1 denote the sum of all entries of a
and s denote the stage number such that stage[s] < ai +
‖a‖1
2e < stage[s + 1]. Given a small variable ε no less than

min{√ m
2n−s−2 ,

4e(maxi=1,···nai)
‖a‖1

}, the estimate âi of SEAD
Counter on CM sketch(w × d counters) has the following
guarantees: with probability at least 1 − δ,

|ai − âi| ≤ ε ‖a‖1 (15)

Proof: Firstly, as the original CM sketch always over-
estimates ai, we only need to proof the direction with larger
error: âi−ai ≤ ‖a‖1. Besides, as SEAD Counter has no error
before the first 2n−1 updates, we can assume ‖a‖1 > 2n−1.

We introduce indicator variables Ii,j,k , which equals to 1
if (i �= k) ∧ (hj(i) == hj(k)) and 0 otherwise. As hash
functions are pairwise independent, then by setting w = 4e

ε ,
we have

E(Ii,j,k = Pr[hj(i) = hj(k)]) ≤ 1
range(hj)

=
ε

4e

Define the random variable Xi,j as
∑n

k=1 Ii,j,kak and we
can see Xi,j > 0 as all ak > 0. Define Zj = count[j, hj(i)]
as the value which should be counted in the place (j, hj(i))
of the hash table and we have Zj = ai + Xi,j . Clearly, min
Zj > ai. Then,

E(Xi,j) = E(
n∑

k=1

Ii,j,kak) ≤
n∑

k=1

akE(Ii,j,k) ≤ ε

4e
‖a‖1

Define �Zj = �count[j, hj(i)] as the estimation value after
count[j, hj(i)] has been counted by the SEAD Counter,
we have

Pr(âi > ai + ε ‖a‖1)
= Pr(∀j, �Zj > ai + ε ‖a‖1)
≤ Pr(∀j, �Zj − Zj + ai + Xi,j > ai + ε ‖a‖1)
≤ Pr(∀j, �Zj − Zj >

ε

2
‖a‖1 ∨ Xi,j >

ε

2
‖a‖1) (16)

For the former probability in the RHS of (16), by the
Chebshev inequality,

Pr(�Zj − Zj >
ε

2
‖a‖1) ≤ 4V(�Zj)

ε2 ‖a‖2
1

≤ 4Zj(γ[s] − 1)
ε2 ‖a‖2

1

≤ 4
ε2

· (ai + Xi,j)2

‖a‖2
1

· γ[s] − 1
Zj

� 4
ε2

· ( ε

4e
+

ε

4e
)2 · m

2n−s

=
1
2e

· m

e · 2n−s−1
� 1

2e
(17)

For the latter probability in the RHS of (16), by the Markov
inequality,

Pr(Xi,j >
ε

2
‖a‖1) < Pr(Xi,j > eE(Xi,j)) <

1
2e

(18)

Therefore, if we choose δ = ln(1/d)

RHS of (16) ≤ (
1
2e

+
1
2e

)d = e−d = δ (19)

�
For the error bounds of C sketch, as the variance brought

by SEAD technique (inequality (10)) is proportionally to the
square of L1 norm, the L2 accuracy guarantee in [20] may be
not satisfied. When applying other estimators like ICEBuckets
on C sketch, as their variances are also O(‖a‖2

1), they can
only provide L1 accuracy guarantee. Therefore, when using C
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sketch and requiring L2 accuracy guarantee (typically enough
memory space), one should use the original counter instead.

From the proof of SEAD on CM sketch above, some
inequalities will not be satisfied when extreme cases hap-
pens. When applying counter estimation strategies (SEAD,
ICEBuckets and etc.) to the sketches, we should be careful to
avoid some extreme cases theoretically. For example, a large
number of updates always come to the same entry, which
means ai = ‖a‖1. However, in real network datasets, these
extreme cases will not happen. We also know from Theorem 1,
there is a lower error bound for ε when counting large flows.
Therefore, counter estimation strategies should only be used
when the memory is limited and they have no advantage in
scenarios where there are sufficient memories.

VI. EXPERIMENTAL RESULTS

We applied our SEAD Counter to the task of flow measure-
ments and set representation, where we use our SEAD Counter
in sketches, as estimators, and in Bloom filters to evaluate
the performance on real applications utilizing approximate
counters. In this section, we start by evaluating the SEAD
Counter technique on a real-world dataset, by comparing
the Average Relative Error (ARE) and the Average Absolute
Error (AAE) across (1) sketches without the SEAD Counter,
(2) with the SEAD Counter and (3) Counter-Tree. Then,
we generate a synthetic dataset which follows the Zipf distribu-
tion. We study how the ARE and AAE values change when we
vary parameters (defined in Section VI-B). We also compare
with other state-of-the-art methods on two large datasets.
Finally, we extend our SEAD Counter to CBF and VI-CBF,
and evaluate these on two real-world datasets by comparing the
false positive rate (FPR) among Bloom filters without SEAD
Counter and with SEAD Counter. We have opensourced our
codes on Github [53].

A. Experimental Setup
1) Datasets:
a) IP Trace Datasets: We use the anonymous IP traces

collected in 2016 from CAIDA [54]. In the experiments,
a five-tuple is used as the ID of a flow, which includes source
IP address, destination IP address, source port, destination
port, and protocol. Each arriving packet consists of a certain
amount of bytes. We consider about 250K packets for our
experiment. To provide an evaluation of traces that are several
orders of magnitude longer, we also use the anonymous IP
traces collected in 2018 from CAIDA, for which we consider
30M packets and 1.46M flows for our experiment, and we
denote the dataset as CAIDA-Large.

b) Kosarac Dataset: We use this dataset to evaluate
our technique in Bloom filters. The Kosarac dataset con-
tains (anonymized) click-stream data of a Hungarian on-line
news portal and it is downloaded from [55]. It contains
41270 distinct items and around 8M clicks.

c) Synthetic Datasets: Since our goal is to find out how
well SEAD Counter sketch performs on datasets with different
characteristics, we also generate synthetic datasets following
the Zipf [56] distribution (p(x) = x−a

ζ(a) ) with different total
flow sizes F (1M to 10M), different numbers of packets Nd,
and different a (from 0 to 3.0 with a step of 0.3). The flow
size is the number of drawn samples from the parameterized
Zipf distribution. The domain from which the elements are
sampled is Nd. We generate them using a performance testing
tool, the Web Polygraph [57].

d) Datacenter Datasets: We use the datacenter trace
from [58]. In the experiments, we also use the five-tuple as the
ID of a flow, which includes source IP address, destination IP
address, source port, destination port, and protocol. We con-
sider 30M packets and 8.64M flows for our experiment.

2) Implementation: We have implemented the sketches of
CM, CU and C in C++. We apply the SEAD Counter tech-
nique to these sketches, and the results are denoted as SEAD
CM, SEAD CU, and SEAD C, respectively. For comparison
purposes, we also implemented Counter-Tree in C++, denoted
as CT in our experiments. The hash functions used in the
sketches are implemented using the 32-bit Bob Hash [59]
with different initial seeds. When the width is small, we can
compute a single hash for different indices. But when the width
is large, We can only compute different hashes for different
counters. To avoid such issues, we compute different hashes
for different counters. For the CM and CU sketches, we set
the number of arrays to 3 and use 3 32-bit Bob Hashes. For
the C sketch, we set the number of arrays to 10 and use
20 32-bit Bob Hashes. We set the counters to 32 bits in the
classical sketches. In the sketches using the SEAD Counter,
the size of the counters is reduced to 16 bits. Furthermore, for
each experiment on the datasets, we run 10 sub-experiments.
We also implement CBF and VI-CBF in C++. For VI-CBF,
We adopt the setting in [52] where D is DL = [L, 2L−1] and
L is set to 4. Therefore, we don’t have to save the lookup table
and we can rely on a single variable-increment counter per
entry, without the additional counter that indicates the number
of hashed elements. We apply our method to these Bloom
filters, and their results are denoted as SEAD CBF and SEAD
VI-CBF. We set the counters to 8 bits in the classical Bloom
filters, and 4 bits in the Bloom filters using SEAD Counters.

B. Metrics
Average Absolute Error (AAE): AAE is defined as

1
|φ|
∑

i∈[n] |fi − f̂i|, where fi is the frequency of token i that

appears in the stream, f̂i is the estimated frequency and |Φ| is
the volume of the set. We use AAE_E and AAE_M to denote
the AAE of elephant flows and mouse flows respectively, and
use AAE to denote the AAE of all flows.

Average Relative Error (ARE): ARE is defined as
1
|φ|
∑

i∈[n]
|fi−f̂i|

fi
, where fi is the frequency of token i that

appears in the stream, f̂i is the estimated frequency and |Φ| is
the volume of the set. We use ARE_E and ARE_M to denote
the ARE of elephant flows and mouse flows respectively, and
use ARE to denote the ARE of all flows.

False Positive Rate (FPR): FPR is defined as the fraction
of false positives, i.e., elements which don’t appear in the set
but are reported to appear by the algorithm.

Per-Flow Memory Consumption: This quantity is defined
as the overall memory size of the sketch divided by the number
of different flows in a data stream.

Per-Packet Memory Consumption: Per-Packet Memory
consumption is defined as the sketch memory size divided by
the number of packets in a data stream. We want to see how
AAE and ARE change when we change per-flow memory or
per-packet memory, so we explicit plot AAE/ARE as a curve
of per-flow memory or per-packet memory.

Throughput: Maximum number of insertions that can
be processed per second. We use Mega-operations per
second (Mops) as the unit of throughput. We measure the
processing speed by feeding one packet of a flow at a time.
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Fig. 4. Experiments on CAIDA.

All the experiments about speed are repeated 100 times
with t < 0.05 for all the experiments to ensure statistical
significance.

Elephant Flows/Mouse Flows: We define flows whose size
is greater than 99% of the flows as elephant flows, and we
define other flows as mouse flows.

C. Effects of SEAD Counter Technique on Sketches
1) Flow Size Measurements on CAIDA Dataset: Since the

Counter-Tree does not support flow volume measurements,
we only compare our technique with the original sketch in
the ARE and AAE experiments.

Effect of SEAD Counter on CM Sketch’s ARE and
AAE (Figures 4(a) and 4(d)): The range of the memory
size in this experiment varies from 125KB to 1000KB. Here,
the original CM sketch is compared to the CM sketch using
the SEAD Counter (Dynamic Sign Bits version). We plot the
ARE and AAE (in log scale) as a function of memory size. Our
results show that when the memory is 1000KB, the original
CM sketch has 8.7 times higher ARE than the CM sketch
using the SEAD Counter. When the memory is below 600KB,
the CM sketch using the SEAD Counter have both lower ARE
and AAE.

Effect of SEAD Counter on C Sketch’s ARE and
AAE (Figures 4(b) and 4(e)): Our experimental results show
that the original C sketch has 15.98 times higher ARE and
4.49 times higher AAE than C sketch using SEAD Counter,
when the memory is 1000KB. The SEAD Counter technique
successfully reduces the ARE and AAE in the case of the
C sketch. Comparing these results with those from the CM
sketch, we can see that the CM sketch gives a better estimation
of flow size than the C sketch for the same memory size.

Effect of SEAD Counter on CU Sketch’s ARE and AAE
(Figures 4(c) and 4(f)): Our experimental results show that
the original CU sketch has 10.9 times higher ARE than the CU
sketch using the SEAD Counter when the memory is 1000KB.
The SEAD Counter technique successfully reduces the ARE
and AAE under small memory consumption in the case of the
CU sketch. Compared to the results of the CM and C sketches,
we see that the CU sketch using the SEAD Counter has the
best performance of all.

Throughput of CM Sketch Using SEAD Counter
(Figure 4(g) and 4(h)): We find that when memory consump-
tion is 1000KB, the throughput (insert) of the Counter-Tree is

the highest and is 2.5 ∼ 2.9 times higher than that of CM
sketch using the SEAD Counter on CAIDA dataset: Counter-
Tree only needs one hash calculation in each insertion. How-
ever, to recover the counts from the Counter-Tree, it needs
more hash functions to scatter the position of each insertion
and its query is much slower. When memory consumption is
1000KB, the throughput (query) of the original CM sketch is
the highest.

Conclusion: In this set of experiments, we tested our SEAD
Counter technique for flow volume measurements. We found
that the CU sketch using the SEAD Counter has the best
performance of all sketches, hence we suggest its use for flow
volume measurements.

2) Flow Size Measurements on Synthetic Datasets: In this
experiment, we generate datasets following the Zipf distrib-
ution (p(x) = x−a

ζ(a) ) with different flow sizes and varying a
(ranging from 0 to 3.0). Here the task consists in measuring
the flow size of each flow. We compare the ARE and AAE
of the original sketches, of sketches using the SEAD Counter,
and of Counter-Tree.

Effect of SEAD Counter on CM Sketch’s ARE and AAE
(Figures 5(a) and 5(d)): We find that when the memory is
1000KB, the original CM sketch has 2.5 times higher ARE
and AAE than the CM sketch using the SEAD Counter, while
the Counter-Tree has an ARE 5.3 times higher than the CM
sketch using the SEAD Counter. As the memory consumption
decreases, the ARE and AAE of Counter-Tree gradually go
down compared to the one of the CM sketch. The ARE and
AAE of the CM sketch using the SEAD Counter are always
the lowest.

Effect of SEAD Counter on C Sketch’s ARE and AAE
(Figures 5(b) and 5(e)): We observe that when the memory
is 1000KB, the original C sketch has 1.79 times higher ARE
and AAE than the C sketch using SEAD Counter, while the
Counter-Tree has an ARE 13.6 times higher than the C sketch
using SEAD Counter. The ARE and AAE of the C sketch
using the SEAD Counter are the lowest for all considered
memory sizes. Note that compared to Counter-Tree, the C
sketch using the SEAD Counter improves accuracy by one
order of magnitude.

Effect of SEAD Counter on CU Sketch’s ARE and AAE
(Figure 5(c) and 5(f)): We find that when the memory is
1000KB, the original CU sketch has 2.7 times higher ARE
and AAE than the CU sketch using SEAD Counter while
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Fig. 5. Experiments on Synthetic Datasets. (skewness is 1.2 except (g)).

Fig. 6. Effect of per-packet memory on ARE and AAE using synthetic datasets.

Counter-Tree has an ARE 10.6 times higher than the CU
sketch using the SEAD Counter. As the memory consumption
decreases, the ARE and AAE of Counter-Tree gradually
become close to the one of the CU sketch. However, the ARE
and AAE of the CM sketch using the SEAD Counter are
always lowest.

CU sketch Using SEAD Counter’s ARE on Synthetic
Datasets With Different Skewness (Figure 5(g)): We find
that the ARE decreases as skewness increases. The ARE for a
skewness of 0 is 9.4 times higher than the ARE when skewness
is 2.1. This means the CU sketch using the SEAD Counter is
also accurate with very skewed datasets.

Conclusion: In this set of experiments, we tested the SEAD
Counter technique for flow size measurements. In skewed
traces, there are large number of mouse flows and the Counter-
Tree’s variance behaves not well for mouse flows: larger than
flow size × (r − 1) (r is one parameter much larger than
1) [30]. Therefore, for the Counter-Tree, their AAE and ARE
is larger than other sketches. We found that the C sketch using
the SEAD Counter has the best performance of all considered
sketches, hence we suggest its use for flow size measurements.

Effect of Per-Packet Memory Size on C Sketch’s ARE
and AAE With Fixed a and Per-Flow Memory Consump-
tion (Figures 6(a) and 6(c)): We find that for the C sketch,
the change of per-packet memory affects ARE in a limited
way compared to per-flow memory consumption. The AAE
of both the C sketch and the C sketch using SEAD Counter
drops with the increase of per-flow memory consumption. The
original C sketch has 2 to 3 times larger AAE than SEAD
Counter sketches.

Effect of Memory Size on CM Sketch’s ARE and
AAE With Fixed a and Per-Flow Memory Consumption
(Figures 6(b) and 6(d)): We find that the original CM sketch
has larger ARE and AAE values compared to the CM sketch

using SEAD Counter. The AAE of both the CM sketch and
the CM sketch using SEAD Counter drop with the increase
of per-flow memory consumption. The original C sketch has
more than 10 times larger AAE than SEAD Counter sketches.

Conclusion: We found that the SEAD Counter technique
effectively adapted to different counting ranges. For the C
sketch and the CM sketch, the change of per-packet memory
consumption affects ARE in a limited way compared to the
change of per-flow memory. However, AAE drops with the
increase of per-packet memory size. Under the same per-
packet memory size, the ARE increases at least 10% when
per-flow memory changes from 48 × 10−4B to 24 × 10−4B
or 24 × 10−4B to 16 × 10−4B. Indeed, it shows that in a
data stream with many distinct packets, the SEAD Counter
technique can improve the accuracy under small per-flow
memory size.

Effect of the Different Versions of the CM Sketch Using
SEAD Counter on ARE and AAE (Figures 7(a) and 7(c)):
In this experiment, we set the memory size of the sketches to
be constant and vary the per-flow memory consumption.

We find that the ARE and AAE of the Static Sign Bits
version of the CM sketch with the length of sign bits s = 3
is 2.43 times higher than the one of the Dynamic version on
average.

Effect of the Different Versions of C Sketch Using SEAD
Counter on ARE and AAE (Figures 7(c) and 7(d)): We find
that when the per-flow memory consumption is 4B, the ARE
and AAE of the Static Sign Bits version C sketch with the
length of sign bits s = 3 is 1.25 times higher than the one
of the Dynamic version on average. The ARE and AAE of
the CM sketch using SEAD Counter in both versions drops
when per-flow memory increases. Under any per-flow memory
consumption, the ARE of the Dynamic Sign Bits version CM
sketch is smaller.
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Fig. 7. Comparison between the two versions of SEAD on synthetic datasets.

TABLE II

EXPERIMENTS OF SKETCHES ON CAIDA-LARGE

Fig. 8. Detailed experiment with synthetic datasets.

Conclusion: This set of experiments showed that the
Dynamic Sign Bits version has better performance than the
Static one under different per-flow memory consumption.

Effect of Per-Flow Memory Consumption on ARE and
AAE (Figures 8(a) and 8(b)): In this experiment, we vary per-
flow memory consumption between 1.3B and 4B. The para-
meter a is set to 0 and the per-packet memory consumption is
fixed to 0.0016B. We find that the ARE and AAE of original
sketches is more impacted by the decrease of per-flow memory
consumption than the one of SEAD Counter sketches. When
the per-flow memory consumption drops to 1.3B, the ratio
between the ARE of the original sketch and of the SEAD
Counter sketch is 10.83 for the CM sketch, 22.93 for the CU
sketch and 2.29 for the C sketch. This result is consistent with
the conclusion we drew in the last section.

3) Flow Size Measurements on CAIDA-Large and Dat-
acenter: We compare the ARE and AAE of the original
sketches, of sketches using the SEAD Counter, SAC [38],
ICEBuckets [41], and pyramid sketches [36]. We use 12.5 bits
per counter for ICEBuckets and 4 bits per counter for Pyramid
Sketches, which are the original settings in their papers.
We use 12 bits per counter for other methods. The result is
shown in Table II and III.

Effect of the Different Versions of the CU Sketch on
CAIDA-Large (Table II): In this experiment, we set the
memory size of the sketches to be 1MB. Here, the original
CU sketch is compared to the CU sketch using the SEAD
Counter (Dynamic Sign Bits version), SAC, ICEBuckets, and
the Pyramid CU sketch. Our results show that when the

memory is 1MB, the CU sketch using the SEAD Counter has
a lower AAE on all flows, and has a lower AAE and ARE
on elephant flows. Though AAE_M, ARE, and ARE_E are
larger, they are very close to the best result achieved by SAC.
Besides, the insert and query throughput is much higher than
that of SAC. PCU has the highest throughput among other
methods. This is because PCU uses word acceleration and
Ostrich Policy to achieve a higher insertion and query speed.
Among the methods that simply replace counters, our method
has a higher insertion and query speed.

Effect of the Different Versions of the CM Sketch on
CAIDA-Large (Table II): In this experiment, we set the
memory size of the sketches to be 1MB. Our results show
that when the memory is 1MB, the CM sketch using the
SEAD Counter has both a lower AAE and ARE on all flows,
and the highest throughput among the sketches that simply
replacing counters. The CM sketch using ICEBuckets has
a lower AAE_E. Among the sketches that simply replacing
counters, our SEAD Counter has a lower AAE and ARE,
and higher insertion and query speed. PCM has the highest
throughput among other methods.

Effect of the Different Versions of the CU Sketch on
Datacenter Trace (Table III): In this experiment, we set
the memory size of the sketches to be 1MB. Our results
show that when the memory is 1MB, PCU has both a lower
AAE and ARE on all flows, and the highest throughput
among other methods. This is because of their Ostrich policy
where they ignore the second and higher layers when getting
the reported values of the d mapped counters. Therefore,
they increment the smallest counter(s) with high probability
to achieve better accuracy. Among the sketches that simply
replacing counters, our SEAD Counter has a lower AAE and
ARE, and higher insertion and query speed. Due to high
skewness of this dataset, for ICEBuckets, most flows with a
few packets (including some elephant flows in this dataset)
are affected by the adjustment of its parameter ε brought by
the largest flows in their buckets. Under such a circumstance
(highly skewed data streams), our SEAD technique achieves
better accuracy.
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TABLE III

EXPERIMENTS OF SKETCHES ON DATACENTER

Fig. 9. Comparison between two kinds of bloom filters with and without SEAD Counter on CAIDA and Kosarac dataset.

D. Effects of SEAD Counter Technique on Bloom Filters

We apply our SEAD Counter technique to both Counting
Bloom Filters (CBF) and Variable-Increment Counting Bloom
Filters (VI-CBF). We use both the static sign bits version
and the dynamic sign bits version. The results are denoted
as SEAD CBF and SEAD VI-CBF.

1) Membership Query on CAIDA Dataset: In this experi-
ment, we perform a membership query for each element of the
dataset. We considered the same 250K packets in the previous
experiments on CAIDA. We compare the false positive rate
of the original bloom filters and of the bloom filters using the
SEAD Counter.

Effect of the Different Versions of CBF Using SEAD
Counter on FPR (Figure 9(a)): The range of the mem-
ory size (in bits per element) in this experiment goes from
20 to 55 bits. The original CBF is compared with CBF using
the SEAD Counter (Dynamic Sign Bits version). We plot
how the FPR changes as a function of memory size. Our
results show that the proposed SEAD Counter mechanism
can improve upon CBF. CBF with the SEAD Counter yields
the better performance, especially for more bits per element.
For instance, for 30 bits per element, the original CBF has
a false positive rate 10.05 times higher than the CBF with
SEAD Counters. Likewise, for 50 bits per element, the SEAD
Counters improve the results by 19.12 times.

Effect of the Different Versions of VI-CBF Using SEAD
Counter on FPR (Figure 9(b)): We find that, for 55 bits
per element, the original VI-CBF has a false positive rate
36.5 times higher than the VI-CBF using SEAD Counters.
As the memory consumption decreases, the false positive
rate of the original VI-CBF becomes close to the VI-CBF
using SEAD Counters. However, the improvement from the
SEAD Counter is still significant. We can achieve an order
of magnitude improvement even when the number of bits per
element is as small as 20 bits per element.

Conclusion: This set of experiments showed that the Bloom
filters using SEAD Counters has better performance than the
original Bloom filters in the task of membership query on the
CAIDA dataset.

2) Membership Query on Kosarac Dataset: In this exper-
iment, we perform a membership query for each element in
the Kosarac dataset.

Effect of the Different Versions of CBF Using SEAD
Counter on FPR (Figure 9(c)): Our results show that the
proposed SEAD Counter mechanism can improve upon CBF.
For 30 bits per element, the original CBF has a false positive
rate 3.17 times higher than the CBF with SEAD Counters.
Likewise, for 50 bits per element, the SEAD Counters improve
the result by 7.36 times.

Effect of the Different Versions of VI-CBF Using SEAD
Counter on FPR (Figure 9(d)): For 55 bits per element,
the original VI-CBF has a false positive rate nearly two orders
of magnitude higher than the VI-CBF using SEAD Counters.
As the memory consumption decreases, the false positive rate
of the original VI-CBF becomes close to the VI-CBF using
SEAD Counters. However, we can still improve the false
positive rate using our technique by 6.24 times.

Conclusion: This set of experiments showed that the Bloom
filters using SEAD Counters has better performance than the
original Bloom filters in the task of membership query on the
Kosarac dataset.

E. Estimators
We use one counter for each flow and estimate the packet

number using the counter. We use AAE and ARE as the
metrics to evaluate the performance of the counters. We define
flows whose size is greater than 99% of the flows as elephant
flows, and we define other flows as mouse flows. We compare
our SEAD Counters with SAC [38], ICEBuckets [41], and
BRICK [42] on CAIDA-Large and the datacenter trace. The
result is shown in Table IV and V. It is shown that our
SEAD Counter has a greater throughput for both insertion and
query. SEAD Counter works better on mouse flows, and thus
achieves a smaller ARE than the other two counters. The AAE
of SEAD Counter is larger due to larger AAE of elephant
flows, which accounts more for AAE. For BRICK, we use
the same parameter settings as the evaluations in [42] with
64 counters per bucket, four levels, and a failure probability of
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TABLE IV

EXPERIMENTS OF ESTIMATORS ON CAIDA-LARGE

TABLE V

EXPERIMENTS OF ESTIMATORS ON DATACENTER

Pf = 10−10. The probability is relatively low because BRICK
maintains exact active counters. We adopt the same failure
probability as in [42]. The total storage space required for
the CAIDA-Large is 1.75 MB, and the total required for the
datacenter trace is 7.68 MB. Though exact statistics counters
could record the value accurately, they are not suitable for data
flow measurement where the memory is constrained.

F. Parameter Settings
The choice of n depends on the circumstances where we

use the counters. If we assign n bits for a normal counter,
it is also safe to use n bits for SEAD Counter. If the
memory is constrained, then we could assign fewer bits to
SEAD Counter. As shown in our experimental results, we use
half the size as the normal counter and still achieve better
performance. Therefore, we empirically suggest that when n
bits are required in a normal counter, we could assign n

2 bits
in SEAD Counter.

When the counting part is large, SEAD Counter can have a
better accuracy when the value is small since it can count more
small values accurately. In the other hand, we can count larger
values if the sign part is large enough. As for s, we would
like to recommend to use 1

4 of the bits as the sign bits
to achieve the balance between the counting range and the
counting part. We would highly recommend users to choose
dynamic sign bits version since it allows to count more small
values accurately than the static sign bits version. What’s more,
we don’t have to tune s in this case.

As for the choice of the expansion array, we recommend
using γ[i] = mi though users may choose other expansion
arrays. The reasons are twofold. For one thing, it is both easier
to implement and faster to process if we choose the expansion
array to be a geometric sequence. For the other, it is consistent
with the characteristics of common data streams where most
flows are small flows. We would like to accurately count the
flows when they are small (γ[0] = 1 makes SEAD Counter
work as a normal counter), and allow for some error when we
need to count large flows. We empirically discuss the choice
of the expansion array. We choose m to range from 1 to
6 and use SEAD Counter as the estimator on CAIDA-Large.
It is shown in Table VI that our SEAD counter achieves the
best performance when m = 4. Note that we could achieve
better performance by tuning m if possible, and our general
expression of the expansion array allows for improvement by
more careful design.

G. Discussion
The experiments on both sketches and bloom filters show

that the SEAD Counter technique is very generic and can
be adapted to all kinds of sketches and bloom filters using

TABLE VI

AAE AND ARE ON CAIDA-LARGE FOR DIFFERENT mS

counters. The technique achieves good performance in the
case of sketches, as our mechanism can improve the space
efficiency and count of both mouse and elephant flows with
good accuracy. Our algorithm performs consistently well in
almost all settings: when we change the per-packet memory,
the per-flow memory, the flow sizes, and the skewness of
the flows. Our technique is also very useful when applied
to VI-CBF, as a typical VI-CBF’s counter is 8 bits, and our
technique can save half the space per counter. Therefore SEAD
VI-CBF achieves both the efficiency and accuracy compared to
VI-CBF. As long as the considered data structure uses counters
where the memory usage is limited, our method can improve
the space efficiency while achieving good accuracy. The SEAD
Counter also allows greater counting ranges and provides more
flexibility when counting, and we don’t need extra space or
time to read the counter. Therefore, this technique achieves
a good balance between space efficiency and accuracy with
little overhead. The expansion array we choose here is very
simple, and there may be better choices depending on the
specific setting of the task. We encourage readers to explore
the use of our mechanism in different applications and try
other possibilities of the expansion array.

Compared with estimators, variable-length solutions like
Pyramid and BRICK are also superior in some ways. BRICK
can maintain exact active counters with a low failure prob-
ability. The strength is that the values are exact but the
weakness is that it needs much more space. Pyramid Sketch
can dynamically assign appropriate number of bits for different
items with different frequencies. It has higher throughput due
to the word acceleration technique. Also, the CU sketch with
Pyramid framework has a higher accuracy due to the Ostrich
Policy, which can be seen from Table III. Empirically, SEAD
Counter has a higher accuracy on CAIDA-Large. CM sketch
with SEAD Counter and CU sketch with Pyramid framework
has a higher accuracy on Datacenter.

VII. CONCLUSION

Thanks to their memory efficient and fast and sufficient
speed, sketches have attracted much attention for network
measurements. If the flow size distribution is uniform, there
is little room for improvements compared to previous work.
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However, when the flow size distribution is highly skewed,
existing sketches are very inefficient in memory usage. No pre-
vious work could achieve memory efficiency without hurting
the sufficient and fast speed, which is really important in high-
speed network traffic. To address this, we proposed a generic
technique, the self-adaptive counters (SEAD Counter), in two
versions, static and dynamic. Our main idea is the following:
When a counter is going to overflow, we do not increase it one
by one, but increase it by a predefined probability. When the
counter is small, it just works like a normal counter. The SEAD
Counter makes small counters capable of representing both
small and large values. The error incurred by the probabilistic
increase is theoretically and experimentally proved to be
negligible compared to the size of elephant flows. We applied
the SEAD Counter to three typical sketches: sketches of CM,
C, and CU. We extended our technique to two typical Bloom
filters: CBF and VI-CBF. We also used our technique as the
estimator. Our experimental results showed that, compared to
the state-of-the-art, sketches using the SEAD Counter improve
the accuracy by up to 13.6 times. The CBF and VI-CBF
using the SEAD Counters can improve the false positive rate
by up to one or two orders of magnitude respectively.
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