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ABSTRACT
∗
Sketches, a type of probabilistic algorithms, have been widely ac-

cepted as the approximate summary of data streams. Compressing

sketches is the best choice in distributed data streams to reduce

communication overhead. The ideal compression algorithm should

meet the following three requirements: high efficiency of compres-

sion procedure, support of direct query without decompression, and

high accuracy of compressed sketches. However, no prior work

can meet these requirements at the same time. Especially, the ac-

curacy is poor after compression using existing methods. In this

paper, we propose Cluster-Reduce, a framework for compressing

sketches, which can meet all three requirements. Our key technique

nearness clustering rearranges the adjacent counters with similar

values in the sketch to significantly improve the accuracy. We use

Cluster-Reduce to compress four kinds of sketches in two use-cases:

distributed data streams and distributed machine learning. Exten-

sive experimental results show that Cluster-Reduce can achieve

up to 60 times smaller error than prior works. The source codes of

Cluster-Reduce are available at Github anonymously [1].
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1 INTRODUCTION
1.1 Background and Motivation
With the increasing volume and velocity of data streams, sketches,

a type of probabilistic algorithms, have been widely used in esti-

mating item statistics [2–4], mining frequent items [5, 6], machine

learning [7–9], and other data mining tasks on data stream [10, 11].

Sketches deal with large volume of data streams by compactly rep-

resenting the data with sub-linear memory to record approximate

information about the data stream. As for high velocity, per-item

computation time of sketches is often constant in the worst case,

which is much faster than that of hash tables, heaps or balanced

trees [12, 13]. The above two advantages of sketches come at the

cost of the approximation error. However, since most Big Data tasks

can tolerate small error, and error of sketches is often small and

controllable, using sketches in data mining tasks on data streams is

both practical and popular.

Sketch compression is an important mechanism in many prac-

tical scenarios. We describe two use-cases that highlight the need

for sketch compression: geo-distributed data analytics, and dis-

tributed machine learning. 1) Geo-distributed data analytics is to

estimate the item statistics or find frequent items in geo-distributed

data streams, using the sketches of CM [2], CU [3], Count [4], etc.

[5, 6, 11, 14]. With the rapid growth of data stream volume, data

streams processing may be scattered on multiple devices globally.

In these distributed data streams, we need to transmit the sketches

deployed in various devices across the network to a central analyzer,

which performs the data mining task with a global review. However,

this is difficult for geographically distributed devices, as Internet

bandwidth can be both limited and unreliable—it is at least one

order of magnitude smaller than the local memory, thus becomes a

bottleneck [11]. One effective way is to build many sketches with

different sizes, and send the appropriated one according to the cur-

rently available network bandwidth, but this is uneconomical in
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terms of computation and memory resources. A more efficient way

is to compress the sketches, which can not only save bandwidth,

but also make efficient use of memory and computation resources.

2) Distributed machine learning (DML) tasks use sketches to com-

pactly represent the gradients on DML devices, such as SketchML

[7], SKETCHED-SGD [8], and FetchSGD [9]. For DML using param-

eter servers [15], transmitting gradients often takes more time than

computing gradients, and becomes the bottleneck of distributed

training. To reduce bandwidth usage, researchers use sketches to

compactly represent gradients [7–9]. In addition, sketch compres-

sion techniques can be employed to further save bandwidth and

improve training efficiency. In summary, for the above two use-

cases and more scenarios where bandwidth efficiency is crucial,

sketch compression is necessary and desirable.

We summarize the design goals of sketch compression mecha-

nism as follows:

• Efficiency: In data mining, the value of data decreases rapidly

with time passing, the compression speed of sketches must be

fast. For DML, speed is also desirable as a slow compression

algorithm prolongs the model training.

• Direct Query: We desire that the compressed sketch can be

queried directly without decompression, which cannot be sup-

ported by traditional compression algorithms. This goal is neces-

sitated by two factors: 1) decompressing all the collected sketches

in the central analyzer or parameter server is time-consuming;

2) storing all decompressed sketches is memory-consuming.

• Accuracy: For direct queries on the compressed sketch, the re-

sults should be accurate. Inaccurate query results may cause

intolerable disruption to data mining and machine learning.

1.2 Limitations of Prior Art
Most existing works focus on compressing the CM sketch [2], which

is widely used in frequency estimation. A CM sketch contains a

counter array and𝑑 hash functions. For each incoming item, the CM

first locates 𝑑 counters by calculating 𝑑 hash functions on the item

ID, which are abbreviated as 𝑑-hash-counters. Then the CM sketch

increases these counters by 1. To estimate the frequency of a given

item, the CM reports the minimum value of the 𝑑-hash-counters.

The CM can guarantee the one-side error, i.e., the estimated fre-

quency must be no less than the real frequency. Hokusai [16] is

the first to compress the CM sketch. It adds up every two adjacent

counters in a CM sketch to halve its memory consumption. And

the compressed sketch still guarantees one-side error. An improved

work, the Elastic sketch [11], first divides the counter array, and

adjacent counters are divided into one group. Then Elastic uses the

maximum value of the counters in each group instead of the sum

to build the compressed sketch, improving the accuracy.

These works achieve the first two design goals. But they are both

inaccurate, because they ignore the relative difference in counters’

values. A sketch is a stochastic encoding of item statistics (e.g.,
frequency), and adjacent counters are independent and skewed,

often have great differences. Take the examples in Figure 1(a) and

1(b). In the original CM sketch, the three adjacent counters in

a group are [6, 102, 8]. If we want a compression ratio of 3, the

compression result using Hokusai is 6 + 102 + 8 = 116, and that

6 102 8

116

6 102 8

102

(a) (b)

6 102 8 105 7 9

6 8 7 9 102 105

1059

1 0 00 1 0

max max

original

clustered

reduced

indicators
(c)

sum max

6 + 102 + 8 max(6, 102, 8)

Figure 1: Examples of (a) Hokusai, (b) Elastic, and (c) Cluster-
Reduce.
using Elastic is max(6, 102, 8) = 102, significantly overestimating 6

and 8.

1.3 Our Proposed Algorithm
In this paper, we propose Cluster-Reduce, a generic framework to

compress various sketches, which is efficient, accurate, and can be

queried directly without decompression. Cluster-Reduce meets all

the above three design requirements: 1) Efficiency: Cluster-Reduce
can compress a 160MB sketch within 1 second, using a single thread

running on a 4.2GHz CPU. 2)Direct Query: the compressed sketch

can be directly queried, with a throughput of 14.7M queries per

second. 3) Accuracy: the compressed sketch can achieve up to 60

times smaller error than the prior works.

Cluster-Reduce has two steps. The first step is named nearness
clustering, which is the key technique of Cluster-Reduce. Same as

Elastic, counters are divided into groups based on adjacency. In

this step, we rearrange the chaotic counters in nearby groups into

clusters. Afterwards, the values of counters in each clusters should

be similar. The second step is named unique reducing, which reduces
each cluster to a unique representative value. We use the example

shown in Figure 1(c) to show how Cluster-Reduce compresses a CM

sketch. In the first step, we classify the six counters into two clusters

{6, 8, 7, 9} and {102, 105} according to a classification strategy, and
use an indicator array {0, 1, 0, 1, 0, 0} to indicate which cluster a

counter is classified into. In the second step, we take the maximum

value of each cluster as the representative, i.e., 8 and 105. The error

for each original counter, i.e., the difference with the representative

of its cluster, is [3, 3, 1; 0, 2, 0]. The total error of 9 is far less than
474 of using Hokusai and 381 of using Elastic.

Nearness clustering is our key technique to achieve accuracy, and
we explain its rationale as follows: The counters in each group

are often skewed and chaotic. If we use the sum or the maximum

value to represent all counters in a group, the largest counter will

significantly increase all the small counters, and cause large over-

estimation errors to these counters. By classifying counters with

similar values in nearby groups into a cluster, using the maximum

value as the representative will only cause slight over-estimation

error to each counter. Note that nearness clustering only allows the

counters in near groups to be classified into a cluster, so as to reduce

the overhead of time and space during the clustering process.

We propose a dynamic programming based method (§3.1) and an

iterative clustering based method (§3.2) to obtain the classification

strategy in the case of using 1-bit indicators and multi-bit indicators,

respectively. The compressed sketch, namely the clustered sketch,
can be queried directly without decompression. Take the CM sketch

as an example. For a given item, Cluster-Reduce first uses the item

ID to find 𝑑 indicators by calculating hash functions, and locate

the corresponding 𝑑 clusters. Cluster-Reduce uses the minimum
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value of the 𝑑 representatives of located clusters as the estimated

frequency of the item.

1.4 Contributions
• We propose Cluster-Reduce, a generic framework to compress

sketches, which is efficient, accurate, and can be queried directly

without decompression.

• We propose two methods to obtain the classification strategy, and

analyze the compression error of Cluster-Reduce theoretically.

• We apply Cluster-Reduce to four kinds of sketches, CM [2], CU

[3], Count [4], and MinMaxSketch [7], on two use-cases: dis-

tributed data streams and DML.

• We perform a comprehensive evaluation of Cluster-Reduce, and

the results show that Cluster-Reduce is superior to existing work

in distributed data streams and DML applications.

2 BACKGROUND AND RELATEDWORK
In this section, we first introduce some typical sketches used in

distributed data streams and DML, and then introduce the related

work for compressing sketches.

2.1 Sketches in Distributed Data Streams
For distributed data streams, the sketch on each distributed device

records approximate information from the local data stream. A

central analyzer collects all the sketches, and performs data mining

and analysing for a global review. Many sketches are designed

to mine item information from data streams. The most typical

sketches, including the sketches of CM [2], CU [3], and Count [4],

are designed for single data stream, but can be easily extended to

distributed data streams. The CM sketch [2] is used to estimate item

frequency, and can guarantee the one-side error. The CU sketch [3]

improves CM, uses conservative update strategy to achieve higher

accuracy, and also guarantees the one-side error. The Count sketch

[4] achieves the unbiased estimation of item frequency, and can

be combined with a heap to find top-K frequent items. Since the

above three kinds of sketches are most widely used, we mainly

study how to use Cluster-Reduce to compress them (see §4 for

details). There are many other sketches, such as ADA-SKETCH

[17], HeavyGuardian [6], WavingSketch [5], MaxLogHash [18],

and others [11, 14, 19–23], that focus on estimating item frequency,

finding frequent items, measuring network traffic, estimating set

similarity, and other data mining tasks.

2.2 Sketches in Distributed Machine Learning
For DML,many sketch based schemes focus on optimizing gradients

transmission in parameter server architecture, such as SKETCHED-

SGD [8], FetchSGD [9], and SketchML [7]. In the parameter server

architecture, there are multiple workers and a parameter server.

Each worker trains the model with the local dataset, and transmits

the gradients to the parameter server. The parameter server aggre-

gates all the gradients, and sends the updated parameters to each

worker. SKETCHED-SGD [8] and FetchSGD [9] use a Count sketch

on each worker to compactly record the gradients, and transmits

the sketches to the parameter server. The parameter server aggre-

gates all the sketches, recovers the gradients from the aggregated

sketch, and updates the parameters on each worker. SketchML [7]

uses a Quantile sketch [24] to sort gradient values into buckets, and

encodes them with bucket indexes. It also proposes a novel sketch,

namely MinMaxSketch, to record the bucket indexes. SketchML

transmits two sketches instead of entire gradients, significantly

reducing communication costs and accelerating training.

2.3 Related Work for Compressing Sketches
To our best knowledge, there are only a few works about compress-

ing sketches, and most of them focus on the CM sketch. Hoku-

sai [16] is the first work to compress the CM sketch. Given a

CM sketch, suppose it has a counter array A with width 𝑤 , i.e.,
A has 𝑤 counters. Hokusai halves the width of its counter ar-

ray by adding up every two adjacent counters. Specifically, for

the compressed counter array A ′ with width 𝑤/2, each counter

A ′[𝑖] = A[2 · 𝑖] + A[2 · 𝑖 + 1]. The Elastic sketch [11] proposes a

more flexible and accurate method to compress the CM sketch. Elas-

tic divides the counter array into groups, each of which contains

the same number of adjacent counters. Elastic creates a compressed

counter array with the maximum value of each group of counters,

so it can achieve any integer compression ratio 𝜆. Specifically, for

the compressed counter array A ′ with width 𝑤/𝜆, each counter

A ′[𝑖] = max(A[𝜆 · 𝑖],A[𝜆 · 𝑖 + 1], · · · ,A[𝜆 · (𝑖 + 1) − 1]).

3 THE CLUSTER-REDUCE ALGORITHM
In this section, we use the CM sketch as an example to show how

Cluster-Reduce works. Cluster-Reduce is divided into two steps:

nearness clustering and unique reducing. We first present the basic

version of nearness clustering, namely the neighbour clustering, and
then the advanced version, namely the region clustering. After that,
we present an optional optimization method.

3.1 Neighbour Clustering using 1-bit Indicator
Compressing the CM Sketch (Figure 2): Given an original CM

sketch, it contains a counter array A with width 𝑤𝑜 , and is as-

sociated with 𝑑 hash functions ℎ1 (·), · · · , ℎ𝑑 (·). To compress the

CM sketch, we have two steps: neighbour clustering and unique

reducing. 1) Neighbour clustering. Given a compression ratio 𝜆, we

divide the original sketch into𝑤𝑐 = 𝑤𝑜/𝜆 equal-sized groups, each

containing 𝜆 continuous counters. For every two neighbour groups

G𝑘 and G𝑘+1, we create a cluster C𝑘 by selecting counters from G𝑘
and G𝑘+1. We propose a dynamic programming (DP) method to

classify counters for minimizing the compression error
1
, which is

detailed later. Each counter in group G𝑘 will be classified into the

left cluster C𝑘 or the right cluster C𝑘+1. We use a 1-bit indicator

for each counter to record the cluster it belongs to: 0 indicates left

and 1 indicates right. Then we have 𝑤𝑐 + 1 clusters and an indi-

cator array with𝑤𝑜 bits. 2) Unique reducing. For each cluster C𝑘 ,
we traverse all counters in it and elect the maximum value as the

representative of the cluster. Then we get a representative array

with𝑤𝑐 + 1 counters. After the above two steps, we compress the

CM sketch with 𝑤𝑜 counters into a representative array R with

𝑤𝑐 + 1 counters and an indicator array I with𝑤𝑜 bits.

Example 1: As shown in Figure 2, in the first step - neighbour
clustering, the two larger counters 27 and 19 in the first group G1
are classified into the left cluster C1, and their indicators are set to

0; the rest two smaller counters 11 and 9 are classified into the right

1
The difference between the counters in the original sketch and the representatives of

their clusters.
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cluster C2, and their indicators are set to 1. Other counters follow the

similar procedure. In the second step - unique reducing, the counters
in the first cluster C1 are 27 and 19, so C1 uses the maximum value,

27, as the representative; the counters in the second cluster C2
are 11, 9, 8, 3, and 7, so C2 uses the maximum value, 11, as the

representative. Other counters follow the similar procedure.

𝒞!𝒞"𝒞#𝒞$𝒞%

27 19 11 9 8 29 3 7 72 42 69 37 13 17 91 3

27 11 42 91 17

0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1

Original Sketch

Clustered / Compressed Sketch
indicator array, 0 indicates left, 1 indicates right

maximum maximum maximum maximum

Clusters

ℎ% = 4 ℎ$ = 7 ℎ# = 12

𝒢% 𝒢#𝒢$ 𝒢"

5 representatives of the clusters

Figure 2: The clustered sketch with 1-bit indicators (param-
eter setting, ⟨𝑤𝑜 ,𝑤𝑐 , 𝜆⟩ = ⟨16, 4, 4⟩).

Direct Query: For a given item 𝑒 , Cluster-Reduce first gets 𝑑

indicators I[ℎ1 (𝑒)],I[ℎ2 (𝑒)], · · · ,I[ℎ𝑑 (𝑒)] by calculating hash

functions, and locates the 𝑑 corresponding clusters, i.e.,

CI′
1

, CI′
2

, · · · , CI′
𝑑

where I ′
𝑘
= ⌊ℎ𝑘 (𝑒)/𝜆 + 1⌋ + I[ℎ𝑘 (𝑒)] .

Cluster-Reduce then reports the minimum value among 𝑑 repre-

sentatives of the located clusters as the estimated frequency of the

item, i.e., min

(
R[I ′

1
],R[I ′

2
], · · · ,R[I ′

𝑑
]
)
.

Example 2: As shown in Figure 2, for a given item 𝑒 , the values cal-

culated by three hash functionsℎ1 (𝑒), ℎ2 (𝑒), ℎ3 (𝑒) are 4, 7, and 12. 1)
For the original CM sketch, the estimated frequency of item 𝑒 is the

minimum value of 3-hash-counters, i.e.,min(A[4],A[7],A[12]) =
min(8, 7, 13) = 7. 2) For the clustered sketch, we first find that three

indicators I[4],I[7],I[12] are 0, 0, and 1, and locate three cor-

responding clusters C2, C2, C5. The estimated frequency of item 𝑒

is the minimum value of the representatives of three clusters, i.e.,
min(R[2],R[2],R[5]) = min(11, 11, 17) = 11.

Dynamic Programming: As mentioned above, we use a dynamic

programming (DP) method to find the optimal classification strat-

egy to minimize the compression error. Now we explain the details.

The DP consists of 𝑤𝑐 steps. In step 𝑘 , we obtain several optimal

classification strategies, considering only the first 𝑘 clusters. These

can be obtained by extending the results of step𝑘−1. Specifically, let
S𝑘 be the classification strategy for the 𝜆 counters in the group G𝑘 ,
i.e., one of 2𝜆 strategies from {0, · · · , 0} to {1, · · · , 1}. Let O𝑘 [S𝑘 ]
be the optimal classification strategy for the first 𝑘 groups when the

strategy for the group G𝑘 is S𝑘 . By enumerating all 2
𝜆
strategies

S𝑘−1 for the group G𝑘−1, we can obtain O𝑘 [S𝑘 ] inherited from

one of O𝑘−1 [S𝑘−1]. The entire optimal classification strategy is the

one with the minimal compression error among all 2
𝜆
strategies

O𝑤𝑐
[S𝑤𝑐
]. Algorithm 1 (shown in Appendix A) shows the pseudo

code, where Error(A, 𝑘,S) is the compression error in the follow-

ing case: only considering the first 𝑘 groups of counter array A,

and using the classification strategy S.

Complexity Analysis: There are totally 𝑂 (𝑤𝑐 · 2𝜆) strategies
O𝑘 [S𝑘 ], and obtaining each strategy requires enumerating 2

𝜆
pre-

decessor strategies, thus the time complexity is 𝑂 (𝑤𝑐 · 4𝜆). For-
tunately, we find that in the optimal strategy, for each group, the

larger counters are classified to one cluster, and the remaining

ones are classified to the other. Therefore, for each group, only

𝑂 (𝜆) instead of𝑂 (2𝜆) strategies should be considered, and the time

complexity can be reduced to 𝑂
(
𝑤𝑐 · 𝜆2

)
. The space complexity is

𝑂 (𝑤𝑐 · 𝜆).

3.2 Region Clustering using Multi-bit Indicator
Using 1-bit indicators is simple, but not flexible enough. For exam-

ple, given 4 counters in a group are 1, 10, 100, and 1000, each counter

has only 2 candidate clusters using 1-bit indicators. Unfortunately,

classifying them into two clusters will cause very large error. To

address this issue, we propose to use multi-bit indicators. Using

𝜇-bit indicators, a counter has 2
𝜇
candidate clusters in a region,

empowering Cluster-Reduce much more flexibility to find better

classification strategies.

Data Structure: The clustered sketch contains a representatives

array with 𝑤𝑐 + 2𝜇 − 1 counters and an indicator array with 𝑤𝑜

indicators. The key difference is that each indicator changes from

1-bit to 𝜇-bit. Correspondingly, each counter in group G𝑘 can be

classified into one of the continuous 2
𝜇
clusters in a region, i.e., the

clusters C𝑘 , C𝑘+1, · · · , C𝑘+2𝜇−1 nearby the group G𝑘 .
Compression: It uses the same two-step compression procedure

as neighbour clustering, but uses an iterative method to obtain the

classification strategy, which we propose later.

Direct Query: It uses the same query procedure as neighbour
clustering.
Challenge: When using 𝜇-bit indicators, the number of classifica-

tion strategies for each group increases exponentially, and the time

complexity of DP increases even faster. Therefore, it is necessary

to design a more efficient method to obtain a classification strategy,

although it may be not so accurate as DP.

47 21 65 38 72 27 42 77 89 57 82 84

21 27 47 38 4265 72 5777 89 82 84

27 477289

nearness clustering

unique reducing

Figure 3: The optimal classification strategy to classify
12 counters into 4 clusters, which is essentially a one-
dimensional clustering for integers.

Iterative Clustering: We first give some insights. Figure 3 shows

the optimal classification strategy for 12 counters, and the result

shows that the optimal classification strategy is actually a local, one-

dimensional clustering of integers. Therefore, we extend K-means

[25], one of the most widely used low-dimensional clustering meth-

ods, to an iterative clustering (IC) algorithm which can be used

in the nearness clustering step of Cluster-Reduce. IC consists of

multiple iterations, and each iteration has two steps. In the first

step - Nearness-Clustering, each counter is classified into one

of 2
𝜇
nearby clusters with the closest representative (which can
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be classified randomly in the first iteration). In the second step -

Unique-Reducing, each cluster uses the maximum of all the coun-

ters classified into it as its representative. Algorithm 2 (shown in

Appendix A) shows the pseudo code. Our experimental results show

that IC can converge within 10 iterations in most cases (see Figure

5 in Section 7.2).

3.3 Optional: Ignoring the Zero-Counters
In a CM sketch reasonably set, there are always a considerable

proportion (e.g., 30%) of counters that are 0, i.e., they are not hashed
by any items. If we only query the item inserted into the original

sketch using the clustered sketch (§ 5.1), Cluster-Reduce can ignore

the counters with a value of 0 during compressing, because they

will never be accessed. In these cases, ignoring the zero-counters

can improve the accuracy of clustered sketch. However, in some

cases, we may query items that have not been inserted (§ 5.1), and

hope to get an estimated frequency close to 0. In these cases, we

cannot use this optional optimization of ignoring the zero-counters.

4 COMPRESSING OTHER SKETCHES
In addition to CM, our Cluster-Reduce can also be used to compress

many other sketches. In this section, we take CU, Count, and Min-

MaxSketch as case studies. We first introduce these sketches and

then show how to extend Cluster-Reduce to these sketches.

4.1 The CU Sketch
Data Structure: The CU sketch [3] can be regarded as an optimiza-

tion of the CM sketch, which can achieve more accurate frequency

estimation by using conservative update (CU) strategy. The data
structure of the CU sketch is the same as that of the CM sketch. The

difference is that for each incoming item 𝑒 , after locating 𝑑-hash-

counters, the CU sketch only increases the minimal counter(s) by 1.

The frequency estimation procedure of the CU sketch is also the

same as that of the CM sketch. Therefore, to compress a CU sketch,

we can simply use Cluster-Reduce without any modification.

4.2 The Count Sketch
Data Structure: The Count sketch [4] is commonly used to pro-

vide unbiased estimation of item frequency. Similar to CM, the

Count sketch contains a counter array A and 𝑑 hash functions

ℎ1 (·), · · · , ℎ𝑑 (·). Besides, it also contains 𝑑 additional hash func-

tions 𝑠1 (·), · · · , 𝑠𝑑 (·). For each incoming item 𝑒 , the Count sketch

first locates the 𝑑-hash-counters. For the 𝑖-th hashed counter, it

uses hash function 𝑠𝑖 (𝑒) to map item 𝑒 to 1 or −1 uniformly, and

adds or subtracts this counter by 1 accordingly. To estimate the

frequency of an item 𝑒 , the Count sketch reports the median value

of 𝑠1 (𝑒) · A[ℎ1 (𝑒)], · · · , 𝑠𝑑 (𝑒) · A[ℎ𝑑 (𝑒)].
Modification: For the Count sketch with two-side error, we follow
the key idea of K-means to minimize the compression error, i.e.,
to take the mean rather than the maximum. When compressing

the Count sketch, for each cluster, we use the mean of all coun-

ters classified to the cluster as its representative. We use iterative

clustering (detailed in Algorithm 2) to compress the Count sketch,

replacing the function Unique-reducingwith Algorithm 3 (shown

in Appendix A).

4.3 MinMaxSketch
Data Structure: MinMaxSketch is used to compactly store key-

value ⟨𝐾,𝑉 ⟩ pairs in the framework of sketchML [7]. MinMaxS-

ketch also has the same data structure as the CM sketch. To record

a key-value pair ⟨𝐾,𝑉 ⟩, for each hashed counter A[ℎ𝑖 (𝐾)], Min-

MaxSketch updates it to the smaller value between𝑉 andA[ℎ𝑖 (𝐾)].
To query the value of a given key 𝐾 , MinMaxSketch reports the

maximum value among 𝑑-hash-counters.

Modification: An important property of MinMaxSketch is that

each counter A[𝑖] does not exceed the value of any key hashed

to A[𝑖]. To guarantee this, for each cluster, we use the minimum

one (rather than the maximum one) of all counters classified to the

cluster as its representative. We also use iterative clustering (IC) to

compress MinMaxSketch, replacing the function Unique-reducing
with Algorithm 4 (shown in Appendix A).

5 APPLICATIONS
In this section, we introduce two distributed applications of Cluster-

Reduce: estimating item frequency in distributed data streams, and

transferring gradients/parameters in DML.

5.1 Distributed Data Streams
Distributed data streams consist of multiple data streams. Each data

stream contains many items, and the ID/key of each item 𝑒 consists

of 𝑛 attributes, i.e., 𝑒 = ⟨𝑎1, · · · , 𝑎𝑛⟩. Each data stream is assigned

to a distributed device, and there is a central analyzer that collects

information and performs analyses. There are two kinds of analyses

on distributed data streams: exact key frequency estimation and

partial key frequency estimation.

Exact Key Frequency Estimationmeasures the number of times

an exact key ⟨𝑎1, · · · , 𝑎𝑛⟩ appears in the distributed data streams.

To support this kind of estimation, we set up a sketch on each

distributed device according to the available local memory, which

can be CM [2], CU [3], Count [4], etc. On each device, for each

incoming item 𝑒 , we use the exact key ⟨𝑎1, · · · , 𝑎𝑛⟩ to insert it into

the corresponding sketch. After each time period, each device uses

Cluster-Reduce to compress the sketch according to the available

network bandwidth, and then transmits the compressed sketch to

the analyzer through network. For a given exact key, the analyzer

first determines which devices it may appear in, and then queries

the corresponding sketches. In this case, Cluster-Reduce uses the

optional optimization: ignoring the zero-counters.

Partial Key Frequency Estimation measures the number of

times a partial key appears in the distributed data streams. A partial

key is a patternwithwildcards, i.e., ⟨· · · , ∗, 𝑎𝑝1 , ∗, · · · , ∗, 𝑎𝑝𝑚 , ∗, · · · ⟩.
We follow the same procedure as exact key frequency estimation,

except using the partial key ⟨𝑎𝑝1 , · · · , 𝑎𝑝𝑚 ⟩ instead of the exact

key to insert each item into the sketch. For a given partial key, the

analyzer cannot determine which data stream contains those items

that satisfy the pattern. So the analyzer queries all sketches for the

estimated frequency, and reports the sum of all results. In this case,

Cluster-Reduce needs to consider the zero-counters, thus cannot

use the optimization.

5.2 Distributed Machine Learning
We take SketchML [7] as an example of the DML. SketchML con-

sists of multiple workers and a parameter server, and each worker
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uses two components to transmit gradients to the parameter server.

SketchML uses a Quantile sketch to encode each gradient value into

an integer within a range, such as [0, 1023], and uses a MinMaxS-

ketch to record the encoded gradients. By using Cluster-Reduce,

we can build a relatively large MinMaxSketch on each worker ac-

cording to the available local memory, and then compress it to a

relatively small size according to the available network bandwidth

when transmitting it to the parameter server.

6 MATHEMATICAL ANALYSIS
In this section, we analyze the error of compressing a CM sketch us-

ing DP (i.e., 1-bit indicators). We discuss the two cases of considering
the zero-counters and ignoring the zero-counters, respectively.

6.1 Considering the Zero-Counters
In this section, we calculate the compression error of some simpler

classification strategies, and use the minimum of them to bound

the error of DP in the case of considering the 0-counters.
Given an original CM sketch containing a counter arrayA with

width 𝑤𝑜 , and a compression ratio 𝜆. We consider the following

classification strategy, namely Greedy-t: For each 𝑘 ∈ [1,𝑤𝑐/2],
where𝑤𝑐 = 𝑤𝑜/𝜆, we classify the smallest 𝑡 of the 2 · 𝜆 counters in

the groups G
2·𝑘−1 and G2·𝑘 to the cluster C

2·𝑘 ; classify the remain-

ing counters in the group G
2·𝑘−1 to the cluster C

2·𝑘−1; and classify

the remaining counters in the group G
2·𝑘 to the cluster C

2·𝑘+1. We

have the following lemma.

Lemma 6.1. Given an original CM sketch containing a counter
array A with width 𝑤𝑜 and 𝑑 hash functions, which is generated
by 𝑛 items, and a compression ratio 𝜆. We use Greedy-t to obtain a
classification strategy I𝑡 , and perform the unique reducing. Then we
have the following bound on the compression error:

𝐸

(
𝑤𝑜−1∑
𝑖=0

(
R𝑡 [I ′𝑡 [𝑖]] − A[𝑖]

))
⩽

(
(2 · 𝜆 − 𝑡 + 1) +

(
2 · 𝜆 + 1

2 · 𝜆 − 𝑡 + 1

)
− 3

)
· (𝑑 · 𝑛),

where I ′𝑡 [𝑖] = ⌊𝑖/𝜆 + 1⌋ + I𝑡 [𝑖] is the index of the cluster to which
counter A[𝑖] is classified.

Due to the limitation of space, the proof of the above Lemma 6.1

is shown in Appendix B. We now give the following bounds of the

compression error of DP.

Theorem 6.2. Given an original CM sketch containing a counter
array A with width 𝑤𝑜 and 𝑑 hash functions, which is generated
by 𝑛 items, and a compression ratio 𝜆. We use DP (considering the
0-counters) to obtain the optimal classification strategy I, and per-
form the unique reducing. Then we have the following bound on the
compression error:

𝐸

(
𝑤𝑜−1∑
𝑖=0

(
R[I ′[𝑖]] − A[𝑖]

))
⩽

(
2 ·
√
2 · 𝜆 + 1 − 3

)
· (𝑑 · 𝑛),

where I ′[𝑖] = ⌊𝑖/𝜆 + 1⌋ + I[𝑖] is the index of the cluster to which
counter A[𝑖] is classified.

Proof. Since we can obtain the optimal classification strategy

by using DP, i.e., the plan with the minimum compression error, so

∀𝑡 we have

𝐸

(
𝑤𝑜−1∑
𝑖=0

(
R[I ′[𝑖]] − A[𝑖]

))
⩽ 𝐸

(
𝑤𝑜−1∑
𝑖=0

(
R𝑡 [I ′𝑡 [𝑖]] − A[𝑖]

))
⩽

(
(2 · 𝜆 − 𝑡 + 1) +

(
2 · 𝜆 + 1

2 · 𝜆 − 𝑡 + 1

)
− 3

)
· (𝑑 · 𝑛) .

Sowe take lower bound for all 𝑡 on the right side of the inequality,

and then we have

𝐸

(
𝑤𝑜−1∑
𝑖=0

(
R[I ′[𝑖]] − A[𝑖]

))
⩽ inf

{(
(2 · 𝜆 − 𝑡 + 1) +

(
2 · 𝜆 + 1

2 · 𝜆 − 𝑡 + 1

)
− 3

)
· (𝑑 · 𝑛)

}
=

(
2 ·
√
2 · 𝜆 + 1 − 3

)
· (𝑑 · 𝑛).

□
6.2 Ignoring the Zero-Counters
In this section, we use a method similar to the Section 6.1 to give

the bound of compression error of DP in the case of ignoring the 0-
counters. Due to the limitation of space, we only give the conclusion.

Theorem 6.3. Given an original CM sketch containing a counter
arrayA with width𝑤𝑜 and 𝑑 hash functions, which is generated by 𝑛
items (𝑚 distinct IDs), and a compression ratio 𝜆. We use DP (ignoring
the 0-counters) to obtain the optimal classification strategy I, and
perform the unique reducing. Then we have the following bound on
the compression error:

𝐸

(
𝑤𝑜−1∑
𝑖=0

(
R[I ′[𝑖]] − A[𝑖]

))
⩽

(
2 ·

√
2 · 𝜆 · (1 − 𝑝) + 𝑝 − 2

)
· (𝑑 · 𝑛),

where I ′[𝑖] = ⌊𝑖/𝜆 + 1⌋ + I[𝑖] is the index of the cluster to which
counter A[𝑖] is classified, and 𝑝 = exp(−𝑑 ·𝑚/𝑤𝑜 ).

7 EXPERIMENTAL RESULTS
7.1 Experimental Setup
Implementation:We have implemented both dynamic program-

ming (DP) based Cluster-Reduce, iterative clustering (IC) based

Cluster-Reduce, and two existing methods from Hokusai [16] and

Elastic [11] in C++. We apply these algorithms on CM [2], CU [3],

and Count
2
[4]. We also simulate SketchML in C++, and implement

IC on MinMaxSketch.

Datasets, Platform, and Metrics: See details in Appendix C.

Due to the limitation of space, we only show the experiments

on CM and Count on the CAIDA dataset here. Experiments on CU

and other datasets are shown in Appendix D and E.

7.2 Experiments on Parameter Settings
In this section, we compare the performance of Cluster-Reduce

using different parameter settings. LetM𝑜 andM𝑏 be the memory

usage of the original sketch and the clustered sketch, respectively.

Let IC-𝜇 be the IC based Cluster-Reduce with 𝜇-bit indicators, and

let 𝜆 be the compression ratio.

2
To compress Count, IC and Hokusai are applicable, while DP and Elastic are not.
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(b) ARE v.s.M𝑏 on Count.
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(d) ARE v.s.M𝑜 on Count.

Figure 4: Comparison of loss and accuracy on different local memory and available bandwidth.
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(a) Error v.s. # iteration on CM.
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(b) Error v.s. # iteration on Count.
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(c) ARE v.s. # iteration on CM.
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(d) ARE v.s. # iteration on Count.

Figure 5: Comparison of accuracy on # iteration.
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Figure 6: Experiments on efficiency.

Accuracy v.s.M𝑏 (Figure 4(a)-(b)): We find that, when limiting

M𝑜 and 𝜆, larger 𝜇 usually brings higher accuracy: when 𝜆 = 8, the

ARE of IC-4 on CM is 17.7 times lower than that of IC-1. Besides,

with the increasing of 𝜆, the accuracy of DP is higher than that of

IC-1, and it decays slower: when 𝜆 = 2, the ARE of DP on CM is 1.57

times lower than that of IC-1, while when 𝜆 = 10, the ARE of DP is

2.67 times lower. Therefore, for 1-bit indicators, we recommend to

use DP to compress CM and CU to achieve the highest accuracy.

Accuracy v.s.M𝑜 (Figure 4(c)-(d)): We find that, when limiting

M𝑏 , the accuracy of IC does not always increase as 𝜇 increases:

when 𝜆 = 2, the ARE of IC-4 on CM is 1.07 times higher than that

of IC-3. This is because the wider indicators take up more memory,

resulting in smaller M𝑜 . Therefore, for multi-bit indicators, we

recommend to use IC-3 to achieve the highest accuracy.

Accuracy v.s. # Iteration (Figure 5): We find that IC always con-

verges within very few iterations: IC-3 on CM and Count converge

within 4 and 8 iterations, respectively.

Efficiency (Figure 6): We find that the compression speed of DP

and IC-3 reach 1.29Gbps and 0.71Gbps, respectively. The direct

query throughput of Cluster-Reduce can achieve 14.7Mops (10
6

queries per second), comparable to the query throughput after de-

compression (i.e., recovering each counter using its representative).

7.3 Experiments on Single Data Stream
In this section, we compare the accuracy of Cluster-Reduce and

two existing methods, Hokusai [16] and Elastic [11], in single data

stream.

Accuracy v.s.M𝑏 (Figure 7): We find that, when 𝜆 = 8, the ARE

of DP and IC-3 on CM are about 2.68/5.87 and 5.07/11.1 times lower

than that of Elastic/Hokusai, respectively.

Accuracy v.s.M𝑜 (Figure 8): We find that, when 𝜆 = 8, the ARE

of DP and IC-3 on CM are about 8.23/21.3 and 7.76/20.1 times lower

than that of Elastic/Hokusai, respectively.

Analysis: The experimental results show that Cluster-Reduce per-

forms best on both cases. When limiting the original memoryM𝑜 ,

Cluster-Reduce brings least effect on accuracy. When limiting the

available bandwidthM𝑏 , Cluster-Reduce can significantly improve

the accuracy. The above advantages are more significant when the

compression ratio 𝜆 is higher.

7.4 Experiments on Distributed Data Streams
In this section, we compare the accuracy of Cluster-Reduce and

two existing methods, Hokusai [16] and Elastic [11], in distributed

data streams. In this case, there are 8 distributed devices and a

central analyzer. Each item in the data stream is identified by 5-tuple

⟨src IP, dst IP, src port, dst port, protocol⟩, and we assign

each item to one of 8 distributed devices according to 5-tuple.

Exact Key Frequency Estimation (Figure 9) : We take the 5-

tuple as the exact key. We find that, whenM𝑏 ≈ 1MB, the ARE of

DP and IC-3 on CM are about 4.52/7.48 and 2.48/4.10 times lower

than that of Elastic/Hokusai, respectively.

Partial Key Frequency Estimation (Figure 10): We take the

⟨src IP, ∗, ∗, ∗, ∗⟩ as the partial key. We find that, whenM𝑏 ≈ 1MB,

the ARE of DP and IC-3 are about 8.43/9.65 and 11.6/13.2 times

lower than that of Elastic/Hokusai, respectively.
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(d) AAE v.s. 𝜆 on Count.

Figure 7: Comparison on performance with limited original memory.
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Figure 8: Comparison on performance with limited available bandwidth.
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(b) ARE v.s.M𝑏 on Count.
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(c) AAE v.s.M𝑏 on CM.

1 2 3

1

1 0

AA
E

M e m o r y  ( M B )

 H o k u s a i    I C - 1 ( o u r s )   
 I C - 3 ( o u r s )   

(d) AAE v.s.M𝑏 on Count.

Figure 9: Comparison in exact key frequency estimation in distributed data streams.
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(b) AAE v.s.M𝑏 on CM.

Figure 10: Comparison in partial key frequency estimation
in distributed data streams.
Analysis: The experimental results show that Cluster-Reduce per-

forms best on both tasks. It worth notice that the accuracy of IC-3

is outstanding on partial key frequency estimation, which hopes

that the sketch can give an estimated frequency close to 0 for items

that do not appear in the data stream. IC-3 is more suitable for this

task. The items that do not appear in the data stream are hashed

into the 0-counters, and they will monopolize some clusters when

using IC-3, so that 0 can be retained.

7.5 Experiments on Distributed ML
In this section, we compare the performance of SketchML [7] with

(ours) and without using Cluster-Reduce (baseline). We conduct

experiments on two distributed applications: classification (using

logistic regression) and regression (using linear regression). In this

case, there are 8 works and a parameter server, and we limit the

available bandwidthM𝑏 for SketchML, which is about
1

6
of that of

transmitting exact gradients.

Classification (Figure 11(a)-(b)): We find that SketchML with IC

can improve the accurate rate by 1.5% on average, and reduce the

loss by 4.8%: after 30 epochs, the loss of SketchML with IC reaches

0.445, and that of baseline is 0.468. Note that the loss of transmitting

exact gradients is 0.424.

Regression (Figure 11(c)): We find that SketchML with IC can

improve the training speed by 20.0% on average: when the loss

reaches 250, SketchML with IC uses 240 epochs, and baseline uses

300 epochs. Note that the method of transmitting exact gradients

uses 190 epochs. Training faster means achieving higher accuracy

when using the same time.
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(c) Loss on regression.

Figure 11: Comparison of SketchML with Cluster-Reduce (ours) and SketchML without Cluster-Reduce (baseline) in DML. To
highlight the advantages of Cluster-Reduce, the data shown in the figure is the difference between SketchML with/without
Cluster-Reduce and an ideal method of transmitting exact gradients.
Analysis: The experimental results shows that, Cluster-Reduce

can improve the training speed and accuracy in DML. Cluster-

Reduce can improve the accuracy of the sketches for transmitting

gradients. Therefore, the parameter server can recover gradients

more accurately and update parameters more precisely, making the

training faster and more accurate.

8 CONCLUSION
In this paper, we propose Cluster-Reduce, a generic framework for

compressing sketches. Cluster-Reduce meets all three requirements

of designing a sketch compression algorithm: it achieves a com-

pression speed of more than 1.3Gbps, a direct query throughput

of more than 14.7Mops, and an estimation error of up to 60 times

smaller than the existing works. Cluster-Reduce has two steps: near-
ness clustering and unique reducing. In the first step, we propose

two methods, a dynamic programming (DP) based method and an

iterative clustering (IC) based method, to obtain optimal or fast

classification strategy. We theoretically derive the error bounds

for compressing the sketch using DP. We use Cluster-Reduce to

compress four kinds of sketches in two use-cases: distributed data

streams and DML. Experimental results show that Cluster-Reduce is

significantly superior to existing tasks in both use-cases. The source

codes of Cluster-Reduce are available at Github anonymously [1].
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A PSEUDO CODES

Algorithm 1: Dynamic Programming based Method.

1 for S1 = {0, · · · , 0} → {1, · · · , 1} do
2 E1 [S1] ← Error(A, 1,S1) ;
3 O1 [S1] ← S1 ;
4 for 𝑘 = 2→ 𝑤𝑐 do
5 for S𝑘 = {0, · · · , 0} → {1, · · · , 1} do
6 E𝑘 [S𝑘 ] ← ∞ ;

7 for S𝑘−1 = {0, · · · , 0} → {1, · · · , 1} do
8 if Error(A, 𝑘,O𝑘−1 [𝑆𝑘−1]

⋃S𝑘 ) < E𝑘 [S𝑘 ]
then

9 E𝑘 [S𝑘 ] ← Error(A, 𝑘,O𝑘−1 [𝑆𝑘−1]
⋃S𝑘 ) ;

10 O𝑘 [S𝑘 ] ← O𝑘−1 [𝑆𝑘−1]
⋃S𝑘 ;

11 E𝑒𝑛𝑡𝑖𝑟𝑒 ←∞;
12 for S𝑤𝑐

= {0, · · · , 0} → {1, · · · , 1} do
13 if Error(A,𝑤𝑐 ,O𝑤𝑐

[𝑆𝑤𝑐
]) < E𝑒𝑛𝑡𝑖𝑟𝑒 then

14 E𝑒𝑛𝑡𝑖𝑟𝑒 ← Error(A,𝑤𝑐 ,O𝑤𝑐
[𝑆𝑤𝑐
]) ;

15 O𝑒𝑛𝑡𝑖𝑟𝑒 ← O𝑤𝑐
[𝑆𝑤𝑐
] ;

16 return O𝑒𝑛𝑡𝑖𝑟𝑒 ;

Algorithm 2: Iterative Clustering based Method.

1 for 𝑖𝑡𝑒𝑟 = 0→ 𝑇 do
2 Nearness-clustering(𝑖𝑡𝑒𝑟 );
3 Unique-reducing(𝑖𝑡𝑒𝑟 );
4 Function Nearness-clustering(𝑖𝑡𝑒𝑟):
5 if 𝑖𝑡𝑒𝑟 = 0 then
6 for 𝑖 = 0→ 𝑤𝑜 − 1 do
7 I[𝑖] ← Random (0, 2𝜇 − 1);
8 else
9 for 𝑖 = 0→ 𝑤𝑜 − 1 do
10 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 ← +∞;
11 for 𝑗 = 0→ 2

𝜇 − 1 do
12 C = ⌊𝑖/𝜆 + 1⌋ + 𝑗 ;
13 if Abs (A [𝑖] − R [C]) < 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 then
14 I[𝑖] ← 𝑗 ;

15 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 ← Abs (A [𝑖] − R [C]);
16 Function Unique-reducing(𝑖𝑡𝑒𝑟):
17 for 𝑖 = 1→ 𝑤𝑐 + 2𝜇 − 1 do
18 R[𝑖] = 0;

19 foreach (⌊ 𝑗/𝜆 + 1⌋ + I[ 𝑗]) = 𝑖 do
20 R[𝑖] = max(R[𝑖],A[ 𝑗]);

Algorithm 3: Unique-reducing for the Count sketch.
1 Function Unique-reducing(𝑖𝑡𝑒𝑟):
2 for 𝑖 = 0→ 𝑤𝑐 + 2𝜇 − 1 do
3 V = {};
4 foreach (⌊ 𝑗/𝜆 + 1⌋ + I[ 𝑗]) = 𝑖 do
5 V .add(A[ 𝑗]);
6 R𝑡 [𝑖] = mean(V);

B PROOF OF LEMMA 6.1
Lemma B.1. Given an original CM sketch containing a counter

array A with width 𝑤𝑜 and 𝑑 hash functions, which is generated
by 𝑛 items, and a compression ratio 𝜆. We use Greed-t to obtain a
classification strategy I ′𝑡 , and perform the unique reducing. Then we

Algorithm 4: Unique-reducing for MinMaxSketch.

1 Function Unique-reducing(𝑖𝑡𝑒𝑟):
2 for 𝑖 = 1→ 𝑤𝑐 + 2𝜇 − 1 do
3 R𝑡 [𝑖] = ∞;
4 foreach (⌊ 𝑗/𝜆 + 1⌋ + I[ 𝑗]) = 𝑖 do
5 R𝑡 [𝑖] = min(R𝑡 [𝑖],A[ 𝑗]);

have the following bound on the compression cost:

𝐸

(
𝑤𝑜−1∑
𝑖=0

(
R𝑡 [I ′𝑡 [𝑖]] − A[𝑖]

))
⩽

(
(2 · 𝜆 − 𝑡 + 1) +

(
2 · 𝜆 + 1

2 · 𝜆 − 𝑡 + 1

)
− 3

)
· (𝑑 · 𝑛).

Proof. Recall that I ′𝑡 [𝑖] indicate the cluster to which the

counter A[𝑖] is classified, and R𝑡 [𝑘] is the representative of the
cluster G𝑘 , then we have:

𝐸

(
𝑤𝑜−1∑
𝑖=0

(
R𝑡 [I ′𝑡 [𝑖]] − A[𝑖]

))
= 𝐸

(
𝑤𝑜−1∑
𝑖=0

R𝑡 [I ′𝑡 [𝑖]]
)
− (𝑑 · 𝑛) . (1)

According to our classification strategy obtained by Greedy-t (sup-
pose 𝑤𝑜 ≡ 0 (mod 2 · 𝜆)), we can rearrange the first term of For-

mula 1 as follows:

𝐸

(
𝑤𝑜−1∑
𝑖=0

R𝑡 [I ′𝑡 [𝑖]]
)

=𝐸
©­«
𝑤𝑐/2∑
𝑘=0

R𝑡 [2 · 𝑘 + 1] · (𝑟2·𝑘 + 𝑟2·𝑘+1) +
𝑤𝑐/2∑
𝑘=1

R𝑡 [2 · 𝑘] · 𝑡
ª®¬ , (2)

where 𝑟
2·𝑘 is the number of remaining counters in the group G

2·𝑘
(𝑟
2·𝑘+1 is similar). In particular, let 𝑟0 = 𝑟𝑤𝑐+1 = 0. Since𝑤𝑜 original

counters are i.i.d., all representative R𝑡 [2 · 𝑘] and R𝑡 [2 · 𝑘 + 1] are
also i.i.d., respectively. And since i.i.d. random variables have the

same expectations, we can simplify Formula 2 as follows:

𝐸

(
𝑤𝑐−1∑
𝑖=0

R𝑡 [I ′𝑡 [𝑖]]
)
=

©­«
𝑤𝑐/2∑
𝑘=0

𝑟
2·𝑘 + 𝑟2·𝑘+1

ª®¬ · 𝐸 (R𝑡 [2 · 𝑘 + 1])
+ ©­«

𝑤𝑐/2∑
𝑘=1

𝑡
ª®¬ · 𝐸 (R𝑡 [2 · 𝑘])

=

(
𝑤 − 𝑤𝑜

2 · 𝜆 · 𝑡
)
· 𝐸 (R𝑡 [2 · 𝑘 + 1]) +

( 𝑤𝑜

2 · 𝜆 · 𝑡
)
· 𝐸 (R𝑡 [2 · 𝑘]). (3)

Next, we analyze 𝐸 (R𝑡 [2 · 𝑘 + 1]) and 𝐸 (R𝑡 [2 · 𝑘]). Since we have
the following inequality:

R𝑡 [2 · 𝑘 + 1] =
(2·𝑘+1) ·𝜆−1

max

𝑖=(2·𝑘−1) ·𝜆
A[𝑖] ⩽

(2·𝑘+1) ·𝜆−1∑
𝑖=(2·𝑘−1) ·𝜆

A[𝑖],

using the linearity of expectation, we have

𝐸 (R𝑡 [2 · 𝑘 + 1]) ⩽
(2·𝑘+1) ·𝜆−1∑
𝑖=(2·𝑘−1) ·𝜆

𝐸 (A[𝑖]) = 2 · 𝜆 · 𝑑 · 𝑛
𝑤𝑜

. (4)

And Because R𝑡 [2 · 𝑘] is the maximum value of the smallest 𝑡

counters in the 2 · 𝜆 counters, we can know that (2 · 𝜆 − 𝑡 + 1) of
10
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(a) ARE v.s.M𝑏 on parameter settings.
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(b) ARE v.s.M𝑜 on parameter settings.
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(c) ARE v.s.M𝑜 on single data stream.
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(d) Exact key frequency estimation.

Figure 12: Experiments on CU.

2 · 𝜆 counters are larger than R𝑡 [2 · 𝑘]. Then using the pigeonhole

principle, we can get

R𝑡 [2 · 𝑘] ⩽
1

2 · 𝜆 − 𝑡 + 1 ·
©­«
(2·𝑘) ·𝜆−1∑

𝑖=(2·𝑘−2) ·𝜆
A[𝑖]ª®¬ .

Again, using the linearity of expectation, we have

𝐸 (R𝑡 [2 · 𝑘]) ⩽

(∑(2·𝑘) ·𝜆−1
𝑖=(2·𝑘−2) ·𝜆 𝐸 (A[𝑖])

)
2 · 𝜆 − 𝑡 + 1 =

2 · 𝜆 · 𝑑 · 𝑛
(2 · 𝜆 − 𝑡 + 1) ·𝑤𝑜

.

(5)

Substituting Formula 4 and 5 into Formula 3, we can get

𝐸

(
𝑤𝑜−1∑
𝑖=0

R𝑡 [I ′𝑡 [𝑖]]
)
⩽

(
𝑤𝑜 −

𝑤𝑜

2 · 𝜆 · 𝑡
)
·
(
2 · 𝜆 · 𝑑 · 𝑛

𝑤𝑜

)
+

( 𝑤𝑜

2 · 𝜆 · 𝑡
)
·
(

2 · 𝜆 · 𝑑 · 𝑛
(2 · 𝜆 − 𝑡 + 1) ·𝑤𝑜

)
=

(
(2 · 𝜆 − 𝑡 + 1) +

(
2 · 𝜆 + 1

2 · 𝜆 − 𝑡 + 1

)
− 2

)
· (𝑑 · 𝑛). (6)

Then we can substitute Formula 6 into Formula 1, and we get

𝐸

(
𝑤𝑜−1∑
𝑖=0

(
R𝑡 [I ′𝑡 [𝑖]] − A[𝑖]

))
⩽

(
(2 · 𝜆 − 𝑡 + 1) +

(
2 · 𝜆 + 1

2 · 𝜆 − 𝑡 + 1

)
− 3

)
· (𝑑 · 𝑛).

□
C DATASETS, PLATFORM, AND METRICS
Datasets: For experiments on data streams, we use the anonymized

IP trace dataset collect in Equinix-Chicago monitor from CAIDA

[26], which contains about 2.7×107 items with 1.3×106 distinct IDs
in total. We also use two other real datasets IMC DC [27] and web-

docs [28], and two synthetic datasets following the Zipf distribution

(Zipf_0.3 and Zipf_2.1, where 0.3 and 2.1 are the skewness), which

are generated by Web Polygraph [29]. For experiments on machine

learning, we use the Twin gas sensor arrays Data Set download

from UCI Machine Learning Repository [30], which contains 640

instances and 10
5
features.

Platform: We conduct the experiments on a 18-core CPU server

(Intel i9-10980XE) with 128GB memory and 24.75MB L3 cache.

Evaluation Metrics:
• Average Relative Error (ARE): 1

𝑚

∑𝑚
𝑖=1
|𝑓𝑖− ˆ𝑓𝑖 |
𝑓𝑖

.

Where 𝑓𝑖 and ˆ𝑓𝑖 are the real and estimated frequency of item 𝑒𝑖 ,

respectively, and𝑚 is the number of distinct items.
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Figure 13: Experiments on other datasets.
• Average Absolute Error (AAE): 1

𝑚

∑𝑚
𝑖=1 |𝑓𝑖 − ˆ𝑓𝑖 |.

• Compression Error: 1

𝑤𝑜

∑𝑤𝑜−1
𝑖=0

|R [I ′[𝑖]] − A[𝑖] |.
Where𝑤𝑜 is the width of the original counter array, A[𝑖] is the
𝑖-th counter, and R[I ′[𝑖]] is the corresponding representative.
• Loss: For the logistic regression, the loss function uses cross

entropy. For the linear regression, the loss function uses L2-norm.

D EXPERIMENTS ON THE CU SKETCH
Accuracy v.s. M𝑏 on Parameter Settings (Figure 12(a)): The
experimental results show that, the performance of Cluster-Reduce

on CU is similar to that of CM shown in Section 7.2. When 𝜆 = 8,

the ARE of DP and IC-3 on CU are about 3.46 and 8.24 times lower

than that of IC-1, respectively.

Accuracy v.s.M𝑜 on Parameter Settings (Figure 12(b)):When

𝜆 = 8, the ARE of DP and IC-3 on CU are about 5.81 and 5.99 times

lower than that of IC-1, respectively.

Accuracy v.s.M𝑜 on SingleData Stream (Figure 12(c)):Wefind

that, when 𝜆 = 8, the ARE of DP and IC-3 on CU are about 15.0/41.6

and 15.5/42.8 times lower than that of Elastic/Hokusai, respectively.

Exact Key Frequency Estimation (Figure 12(d)): We find that,

whenM𝑏 ≈ 1MB, the ARE of DP and IC-3 on CU are about 5.88/16.1

and 3.07/8.41 times lower than that of Elastic/Hokusai, respectively.

E EXPERIMENTS ON OTHER DATASETS
Accuracy v.s.M𝑜 on Single Data Stream (Figure 13): The ex-
perimental results show that, the performance of Cluster-Reduce on

other datasets is similar to the results shown in Section 7.3. When

limitingM𝑏 , the ARE of DP on IMC DC, webdocs, Zipf_0.3, and

Zipf_2.1 are about 6.33/60.5, 11.9/59.6, 10.2/32.1, and 12.4/28.1 times

lower than that of Elastic/Hokusai, respectively; the ARE of IC-3

on the four datasets are about 3.51/33.5, 8.13/40.9, 8.49/26.7, and

10.6/23.9 times lower, respectively.
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