flink udf eval

792 篇文章 ¥99.90 ¥299.90
这篇博客介绍了如何在Flink中使用UDF(用户定义函数)配合eval方法处理MySQL表中的数据。通过CDC(变更数据捕获)读取数据后,利用UDF解析expr_str列中的字符串表达式,实现数据的处理和转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

// flinkeval flinkexec flink执行字符串表达式

// scala版本

原始表 mysql表

udf eval配合写法

// 我这里用cdc读取数据,然后配合udf来解析列( expr_str )字符串中的表达式


import org.apache.flink.streaming.api.scala._
import org.apache.flink.table.api._
import org.apache.flink.table.api.bridge.scala._
import org.apache.flink.table.functions.ScalarFunction

import scala.tools.reflect.ToolBox
import scala.reflect.runtime.currentMirror
import scala.xml.XML


object udf_parse_expr {

    def main(args: Array[String]): Unit = {
        //获取执行环境
        val sEnv = StreamExecutionEnvironment.getExecutionEnvironment
        // 每 1000ms 开始一次 checkpoint
//     
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas2143

您的打赏是我的动力!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值