package org.example;
import org.apache.flink.table.annotation.DataTypeHint;
import org.apache.flink.table.annotation.FunctionHint;
import org.apache.flink.table.functions.ScalarFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.python.PythonScalarFunction;
import org.apache.flink.types.Row;
import org.apache.flink.api.java.tuple.Tuple2;
import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.call;
public class FlinkUdf extends ScalarFunction {
@FunctionHint(output = @DataTypeHint("ROW<s string, i int>"))
public Row eval(String s) {
return Row.of(s.toUpperCase(), s.length());
}
public static
flink udf 返回多列 demo
最新推荐文章于 2025-02-01 15:58:40 发布