这里将介绍如何从零开始,使用Transformer模型训练一个最小化的聊天机器人。该流程将尽量简化,不依赖预训练模型,并手动实现关键步骤,确保每一步都容易理解。
1. 环境准备
首先,确保安装了必要的Python库。我们只需要基本的Numpy和PyTorch库来实现我们的Transformer模型。
pip install numpy torch
2. 数据准备
创建一个简单的对话数据集。对于最小化实现,我们使用手工编写的对话数据集。
data = [
("你好", "你好!有什么我可以帮助你的?"),
("今天天气怎么样?", "今天天气很好,阳光明媚。"),
("你会做什么?", "我可以和你聊天,回答你的问题。")
]
3. 数据预处理
手动实现一个简单的分词和编码器。
# 建立词汇表
vocab = {
"<PAD>": 0, "<SOS>": 1, "<EOS>": 2}
for pair in data:
for sentence in pair:
for word in sentence:
if word not in vocab:
vocab[word] = len(vocab)
# 编码函数
def encode(sentence, vocab):
return [vocab["<SOS>"]] + [vocab[word] for word in sentence] + [vocab["<EOS>"]]
# 编码数据
encoded_data = [(encode(pair[0], vocab), encode(pair[1], vocab)) for pair in data]
# 确保所有句子长度一致(填充或截断)
max_len = max(max(len(pair[