- 只需订阅这一个专栏即可阅读:芒果YOLOv10所有改进内容
- 💡本篇文章基于 YOLOv10改进主干GhostNetV2系列:提出原创GhostNetV2 架构升级版:引入长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干,打造高效轻量级检测器。
- 重点:🔥🔥🔥有不少同学已经反应 专栏的教程 提供的网络结构 在数据集上
有效涨点!!!
- 重点:🌟YOLOv10专栏内容持续更新中🎈☁️🏅️,订阅了该专栏的读者务必·
私信博主
·加·YOLOv10全新创新点交流群·群内不定时会发一些其他未公开的Tricks.
一、GhostNetV2论文理论部分 + YOLOv10代码改进
轻量级卷积神经网络 (CNN) 专为推理速度更快的移动设备上的应用程序。卷积的
操作只能捕获窗口区域中的本地信息,从而防止性能进一步提高。在卷积中引入 self-attention 可以很好地捕获全局信息,但会在很大程度上阻碍实际速度。在本文中,我们提出了一种硬件友好的注意力机制(称为DFC ),然