芒果YOLOv10改进39:主干Backbone篇之GhostNetV2:提出原创GhostNetV2 架构升级版:引入长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干,打造高效轻量级检测器

文章介绍了在GhostNetV2架构中引入的原创DFC注意力机制,以增强轻量级模型的性能。通过解耦全连接注意力,GhostNetV2能捕获长距离信息,同时保持高效。GhostNetV2在YOLOv10中的应用,结合核心代码,展示了如何构建更高效的轻量级目标检测器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、GhostNetV2论文理论部分 + YOLOv10代码改进

在这里插入图片描述

请添加图片描述

轻量级卷积神经网络 (CNN) 专为推理速度更快的移动设备上的应用程序。卷积的
操作只能捕获窗口区域中的本地信息,从而防止性能进一步提高。在卷积中引入 self-attention 可以很好地捕获全局信息,但会在很大程度上阻碍实际速度。在本文中,我们提出了一种硬件友好的注意力机制(称为DFC ),然

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值