芒果YOLOv10改进41:分类损失函数Loss篇FocalLoss:即插即用|最新改进FocalLoss损失函数,提高处理不平衡数据分类场景下的任务性能,提升YOLOv8检测精度

博客介绍了如何通过应用FocalLoss改进YOLOv10,解决不平衡数据分类问题,提高目标检测的准确性。FocalLoss动态调整交叉熵损失,减少简单样本的影响,专注于困难样本的训练。文章包含FocalLoss的理论解释、代码实践和YOLOv10的改进步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡YOLOv10改进Loss系列:即插即用|最新改进FocalLoss损失函数,提高处理不平衡数据分类场景下的任务性能,提升YOLOv10检测精度

💡CSDN芒果汁没有芒果🥭:YOLOv10 最新首发创新点改进源代码!! YOLOv10系列!

💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv10 按步骤操作改进代码即可

💡论文地址:https://arxiv.org/abs/1708.02002

一、FocalLoss 论文理论部分 + 原创最新改进 YOLOv10 代码实践改进


请添加图片描述
在这里插入图片描述

迄今为止最高精度的目标检测器基于 R-CNN 推广的两阶段方法,其中将分类器应用于一组稀疏的候选目标位置。相比之下,应用于对可能的物体位置进行常规、密集采样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值