💡YOLOv10改进Loss系列:即插即用|最新改进FocalLoss损失函数,提高处理不平衡数据分类场景下的任务性能,提升YOLOv10检测精度
💡CSDN芒果汁没有芒果🥭:YOLOv10 最新首发创新点改进源代码!! YOLOv10系列!
💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv10 按步骤操作改进代码即可
💡论文地址:https://arxiv.org/abs/1708.02002
一、FocalLoss 论文理论部分 + 原创最新改进 YOLOv10 代码实践改进
文章目录


迄今为止最高精度的目标检测器基于 R-CNN 推广的两阶段方法,其中将分类器应用于一组稀疏的候选目标位置。相比之下,应用于对可能的物体位置进行常规、密集采样