论文地址:https://arxiv.org/pdf/2108.11539.pdf
项目地址:https://github.com/cv516Buaa/tph-yolov5
在无人机捕获的场景中进行对象检测是最近的一项热门任务。由于无人机总是在不同的高度航行,物体尺度变化剧烈,给网络优化带来了负担。此外,高速和低空飞行会在密集的物体上带来运动模糊,这给物体识别带来了很大的挑战。为了解决上述两个问题,我们提出了 TPH-YOLOv5。在 YOLOv5 的基础上,我们增加了一个预测头来检测不同尺度的物体。然后我们用 Transformer Prediction Heads (TPH) 替换原来的预测头,以利用自注意力机制探索预测潜力。我们还集成了卷积块注意模型 (CBAM),以在具有密集对象的场景中找到注意区域。为了进一步改进我们提出的 TPH-YOLOv5,我们提供了许多有用的策略,例如数据增强、多尺度测试、多模型集成和利用额外的分类器。对数据集 Vis