主干网络篇 | YOLOv8 更换主干网络之 GhostNetV2 | 《GhostNetV2:利用长距离注意力增强廉价操作》

本文介绍了如何在YOLOv8中使用GhostNetV2作为主干网络,GhostNetV2通过DFC注意力机制增强局部和长距离信息的融合,提升了轻量级网络在检测、分割等任务上的性能。GhostNetV2在保持高效运算的同时,相比GhostNetV1在ImageNet上达到更高的Top-1准确率。替换步骤包括创建新文件、导入代码、更新配置文件及主干网络构建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《GhostNetV2:Enhance Cheap Operation with Long-Range Attention》

在这里插入图片描述

轻量级卷积神经网络(CNN)是专门为在移动设备上具有更快推理速度的应用而设计的。卷积操作只能捕捉窗口区域内的局部信息,这防止了性能的进一步提高。将自注意力引入卷积可以很好地捕捉全局信息,但这将大大拖累实际速度。本文提出了一种硬件友好的注意力机制(称为DFC注意力),并提出了一种适用于移动应用的新GhostNetV2架构。所提出的DFC注意力是基于全连接层构建的,不仅可以在通用硬件上快速执行,而且还可以捕捉长距离像素之间的依赖关系。我们进一步重新审视了先前GhostNet中的表现瓶颈,并建议使用DFC注意力增强由廉价操作产生的扩展特征,以便GhostNetV2块可以同时聚合局部和长距离信息。广泛的实验表明GhostNetV2优于现有架构。例如,它在ImageNet上实现了75.3%的Top-1准确率,FLOPs为167M,显着抑制了具有类似计算成本的GhostNetV1&

fasternet是YOLOv8中的主干网络更换方案之一。YOLOv8是目标检测算法YOLO系列的最新版本,它在YOLOv3的基础上进行了一些改进和优化。 传统的YOLOv3主干网络采用的是Darknet53,这是一个由53个卷积层组成的卷积神经网络。虽然Darknet53在一定程度上能够提取出图像的特征信息,但是它的计算量较大,速度较慢。 为了进一步提高YOLOv8的检测速度,研究者们提出了fasternet作为新的主干网络方案。fasternet是一种轻量级的卷积神经网络,它采用了一种称为Focus module的结构。 Focus module有两个主要的特点。首先,它将输入图像分为四个部分,并在每个部分上进行卷积操作,这样可以捕捉到不同尺度的特征。其次,Focus module使用了一个更小的卷积核来代替传统的大卷积核,这样可以减少参数量,加快计算速度。 相比于Darknet53,fasternet在保证检测性能的同时,减小了网络规模,从而提高了检测速度。实验结果表明,使用fasternet作为YOLOv8主干网络可以获得与之前版本相当的准确率,在速度上有了大幅度的提升。 总之,fasternet是YOLOv8中一种更为轻量级的主干网络,它通过优化网络结构和参数量,提高了目标检测算法的实时性和计算效率。这一改进使得YOLOv8能够在更高的速度下对图像中的目标进行快速、准确地检测,为目标检测技术的发展追求更高的水平。
评论 34
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值