🌟YOLOv5/v7 改进实战 | 目录 | 使用教程🌟
本专栏涵盖了丰富的 YOLO
算法改进与使用教程,专为改进 YOLO
的同学而设计。专栏阅读量已突破 80w+ ,全站最早最经典的教程!所有改进方法都提供了详细的手把手教程,欢迎大家订阅并一同探索!
各位同学大家好,感谢大家一直以来的支持,现在我将提供 YOLOv5-Magic 私域代码框架,框架基于YOLOv5 7.0版本构建,融合了YOLOv5 相关所有改进和一系列便利性科研工具,博主本人亲自维护更新!框架介绍
代码框架托管在 Github ,可以通过 git clone 指令随时拉取,第一时间获取最新改进代码,现在代码框架只针对订阅过 《YOLOv5/v7改进实战》或者《YOLOv5/v7进阶实战》的同学开放,大家可以私聊我加入我的Github私有组织,加入组织后可以直接获得第一手代码,并且在我更新代码或者添加代码后可以直接拉取到自己的代码中,相应的操作方法请看视频教程。
不会使用或者不想学习Github使用方法的同学可以直接在qq 群816929013中获取代码框架。
目前代码框架持续更新中,会不定时添加更多的模块和工具,欢迎大家订阅我的专栏。
需要加入github组织的同学请自行注册github账号,然后将账号id私聊发给群主,等待同意后就可以加入组织了。
ps:代码框架与博客教程并无冲突,部分改进无法集成到框架中。使用github 的目的也是为了方便给大家分发代码,并且也提供了一个社区功能,大家可以在 github 上提出自己的问题和代码,组织内成员共同学习进步。
专栏地址:点击跳转
YOLOv5和YOLOv7代码几乎相同,所以下面的教程同时适用于YOLOv5和YOLOv7
基础教程系列
-
空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC🌟 试读
-
万字长文!YOLO算法模型yaml文件史上最详细解析与教程!小白也能看懂!掌握了这个就掌握了魔改YOLO的核心!🍀)🌟 试读
改进系列
注意力篇 🥇
-
改进YOLOv55️⃣ | 在 C3 模块中添加【SimAM】【CoTAttention】【SKAttention】【DoubleAttention】注意力机制 | 附详细结构图
-
改进YOLOv55️⃣ | 在 C3 模块中添加【EffectiveSE】【GlobalContext】【GatherExcite】【MHSA】注意力机制 | 附详细结构图
-
改进YOLOv55️⃣ | 在 C3 模块中添加【Triplet】【SpatialGroupEnhance】【NAM】【S2】注意力机制 | 附详细结构图
-
改进YOLOv55️⃣ | 在 C3 模块中添加【ParNet】【GAM】【ParallelPolarized】【Sequential】注意力机制 | 附详细结构图
-
改进YOLOv77️⃣ | 在 ELAN 模块中添加 【CA】【ECA】【CBAM】【SE】注意力机制 | 附详细结构图🍀
-
改进YOLOv77️⃣ | 在 ELAN 模块中添加 【SimAM】【CoTAttention】【SKAttention】【DoubleAtt】注意力机制 | 附详细结构图🍀
-
改进YOLOv77️⃣| 在 ELAN 模块中添加 【EffecSE】【GlobalContext】【GatherExcite】【MHSA】注意力机制 | 附详细结构图🍀
-
改进YOLOv77️⃣ | 在 ELAN 模块中添加 【Triplet】【SpatialGroupEnhance】【NAM】【S2】注意力机制 | 附详细结构图🍀
主干网络篇 🥇
- 主干网络篇 | YOLOv5/v7 更换骨干网络之 PP-LCNet | 轻量级CPU卷积神经网络🍀
- 主干网络篇 | YOLOv5/v7 更换骨干网络之 EfficientNet | 卷积神经网络模型缩放的再思考🍀
- 主干网络篇 | YOLOv5/v7 更换骨干网络之 MobileNetV3 | 基于神经网络搜索的轻量级网络🍀
- 主干网络篇 | YOLOv5/v7 更换骨干网络之 GhostNet | 从廉价的操作中生成更多的特征图🍀
- 主干网络篇 | YOLOv5/v7 更换主干网络之 ShuffleNetv2 | 高效CNN架构设计的实用指南🍀
- 主干网络篇 | YOLOv5/v7 更换主干网络之 SwinTransformer | Vision Transformer using Shifted Windows
- 主干网络篇 | YOLOv5/v7 更换主干网络之 VGG | 对比实验必备🍀
- 主干网络篇 | YOLOv5/v7 更换骨干网络之 HGNetv2 | 百度新一代超强主干网络🍀
- 主干网络篇 | YOLOv5/v7 更换主干网络之 ResNet50/ResNet101 | 对比实验必备🍀
特征融合篇 🥇
- YOLOv5 如何更换BiFPN?
- YOLOv7 如何更换BiFPN?
- YOLOv5/v7 更换上采样方式( 最近邻 / 双线性 / 双立方 / 三线性 / 转置卷积)
- YOLOv5/v7 引入 GSConv+Slim-neck 减轻模型的复杂度同时提升精度
- YOLOv5/v7 引入 BiFusion Neck
- YOLOv5/v7 应用轻量级通用上采样算子CARAFE
- YOLOv5/v7 引入Haar小波下采样 | 一种简单而有效的语义分割下采样模块
其他改进 🥇
- YOLOv5/v7 如何更换激活函数?
- 改进YOLOv5 | 头部解耦 | 将YOLOX解耦头添加到YOLOv5 | 涨点杀器
- 改进YOLOv7 | 头部解耦 | 将YOLOX解耦头添加到YOLOv7 | 涨点杀器
- 改进YOLOv5 | Stand-Alone Self-Attention | 搭建纯注意力FPN+PAN结构
- 基于Transformer的YOLOv5小目标检测器 | 四头加注意力
- 改进YOLOv5 | 引入密集连接卷积网络DenseNet思想 | 搭建密集连接模块
- YOLOv5/v7 引入 YOLOv8 的 C2f 模块
- YOLOv5/v7 引入 RepVGG 重参数化模块
- YOLOv5/7 更换 DIoU-NMS
- 改进YOLOv5/v7 | 用于低分辨率图像和小物体的模块SPD-Conv
- 损失函数篇 | YOLOv5 引入Unified-IoU 高质量目标检测IoU损失