即插即用篇 | YOLOv8引入PSAModule | 高效金字塔压缩注意力模块

本文介绍了YOLOv8框架中引入的PSAModule,这是一种新的轻量级注意力机制,能提升模型性能。PSAModule通过在瓶颈块中替换卷积,形成高效金字塔挤压注意力块,实现多尺度空间信息的提取和长程通道依赖性。实验证实在图像分类、对象检测和实例分割等任务上,PSAModule表现出色,超越多数现有方法。提供代码地址和详细的添加、训练指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本改进已集成到 YOLOv8-Magic 框架。

在这里插入图片描述
在这里插入图片描述

最近研究表明,通过在深度卷积神经网络中嵌入注意力模块可以有效地提高网络性能。在这项工作中,提出了一种新的轻量级且有效的注意力方法,名为金字塔挤压注意力(PSA)模块。通过在ResNet的瓶颈块中用PSA模块替换3x3卷积,得到了一种新的表征块,称为高效金字塔挤压注意力(EPSA)块。EPSA块可以轻松地作为即插即用的组件添加到一个成熟的骨干网络中,并且可以实现模型性能的显著提升。因此,在这项工作中通过堆叠这些ResNet风格的EPSA块,开发了一个简单且高效的骨干架构,命名为EPSANet。相应地,所提出的EPSANet能为各种计算机视觉任务提供更强的多尺度表征能力,包括但不限于图像分类、对象检测、实例分割等。在无需复杂配置的情况下,所提出的EPSANet的性能超过了大多数最先进的通道注意

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值