即插即用篇 | YOLOv10 引入 SpatialGroupEnhance 注意力机制 | 《Improving Semantic Feature Learning in Convolutiona》

在这里插入图片描述

论文名称:《Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks》

论文地址:https://arxiv.org/pdf/1905.09646.pdf

代码地址:https://github.com/implus/PytorchInsight



1 原理

卷积神经网络通过收集层次化和不同部分的语义子特征来生成复杂对象的特征表示。这些子特征通常以分组形式分布在每个层的特征向量中,代表不同的语义实体。然而,这些子特征的激活往往受到相似模式和噪声背景的空间影响,导致错误的定位和识别。我们提出了一种空间分组增强(SGE)模块,它可以通过为每个语义组中的每个空间位置生成一个注意力因子来调整每个子特征的重要性,从而使每个单独的组可以自主增强其学习表达并抑制可能的噪声。注意力因子仅受每个组内全局和局部特征描述符之间的相似性引导,因此SGE

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值