BAD SLAM | 直接法实时BA+RGBD基准数据集(CVPR2019)

本文深入解读了CVPR 2019论文“BAD SLAM”,该研究提出一种实时的直接法Bundle Adjustment (BA)算法,适用于RGB-D SLAM系统,并建立了一个高同步性的RGB-D SLAM基准数据集。BAD SLAM通过优化BA实现了在GPU上的实时稠密BA,性能超越其他系统。此外,论文还介绍了SLAM系统的前后端架构,包括预处理、里程计、回环检测和后端优化。文章强调了新数据集的优势,如消除硬件缺陷,提高了数据准确性,为研究者提供了宝贵的资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文解读:BAD SLAM | 直接法实时BA+RGBD基准数据集(CVPR2019)

本文解读的论文为发表于CVPR 2019的 "Schops, Thomas, Torsten Sattler, and Marc Pollefeys. Bad slam: Bundle adjusted direct rgb-d slam. Proceedings of the IEEE conference on computer vision and pattern recognition. 2019."

虽然这篇论文的主要创新是对SLAM中优化步骤中常用的Bundle Adjustment算法进行改进,本篇文章对BAD SLAM整个SLAM系统进行了介绍,对SLAM中常见的前后端架构,以及其中涉及到的每个步骤都有简单的介绍,利于读者对SLAM系统有大概的认知。

这篇论文还建立了一个RGB-D SLAM的基准数据集,由于论文中提到的它相对于RGB-D SLAM领域常用数据集TUM RGB-D在硬件、评测设置等方面的优越性,该论文的数据集也是RGB-D SLAM领域研究者值得关注、使用的数据集。

主要贡献

  • 提出一个快速的直接法的BA,用于RGB-D SLAM系统中,一个GPU就可以实现实时性能,且效果性能超过其他现有系统

  • 建立并公开了一个RGB-D SLAM的基准数据集,相比以往的数据集,主要优势是数据在采集时就保障了高度同步性,且消除了卷帘快门的影响;此外还在项目官网www.eth3d.net上建立一个排行榜,保留了一部分测试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值