作者:一杯红茶 | 来源:计算机视觉工坊
在公众号「3D视觉工坊」后台,回复「原论文」即可获取论文pdf。

介绍
以往的特征检测和匹配算法侧重于提取大量冗余的局部可靠特征,这样会导致效率和准确性有限,特别是在大规模环境中挑战性的场景,比如天气变化、季节变化、光照变化等等。
本文将高级语义信息隐式地嵌入到检测和描述过程中来提取全局可靠的特征,即他们设计了一个语义感知检测器,能够从可靠的区域(如建筑物、交通车道)检测关键点,并隐式地抑制不可靠的区域(如天空、汽车),而不是依赖于显式的语义标签。通过减少对外观变化敏感的特征数量,并避免加入额外的语义分割网络,提高了关键点匹配的准确性。此外,生成的描述符嵌入了语义信息后具有更强的鉴别能力,提供了更多的inliers。
论文实验是在Aachen DayNight和RobotCar-Seasons数据集上进行的长时大规模视觉定位测试。
出发点
目前最先进效果最好的特征检测和描述算法都是基于学习的方法,由于有大量的训练数据,这些方法能够通过聚焦于有判别性的特征,即从更可靠的区域(如建筑物、交通车道)中提取关键点,但是训练中缺少语义信息,他们选择全局可靠的关键点的能力有限,如下图所示,他们更喜欢