大盘点!22项开源NeRF SLAM顶会方案整理!(上)

本文作者整理了22个将NeRF与SLAM结合的开源方案,分为仅优化NeRF、仅优化位姿、位姿和NeRF联合优化三类。NeRF结合SLAM旨在建立稠密三维场景或优化位姿,为自动驾驶和3D视觉提供新思路。文中介绍了各个方案的核心思想、实现方法和效果,包括NeRF、Point-NeRF、NeRF-SLAM、iNeRF等项目,并探讨了它们在定位、建图和实时性方面的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:泡椒味的口香糖  | 来源:计算机视觉工坊

添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。

0. 笔者个人体会

NeRF结合SLAM是这两年新兴的方向,衍生出了很多工作。目前来看SLAM结合NeRF有两个方向,一个是SLAM为NeRF训练提供位姿,然后建立稠密细腻的三维场景,一个是在NeRF里建立各种损失函数反过来优化pose和depth。那么NeRF结合SLAM都有哪些典型工作呢,本文将为大家做一个简单梳理。希望能够为想要入门NeRF SLAM的小伙伴提供一点研究思考。

受于篇幅限制,本文不会过多介绍文章细节。将所有相关文章划分为仅优化NeRF、仅优化位姿、位姿和NeRF联合优化、物体级NeRF SLAM、雷达NeRF SLAM这五类。同时为避免生硬的翻译原文,本文针对每篇文章的介绍将以四个问题来进行,分别是这篇文章希望解决什么问题?核心思想是什么?具体如何实现?有什么效果?当然笔者水平有限,如果有理解不当的地方欢迎各位读者批评指正~

1. 目录

受于篇幅限制,先放一个目录列举本文都介绍了哪些方案。

仅优化NeRF

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值