最后,给大家们推荐一门工业缺陷检测课程,本课程主要针对当前工业缺陷检测过程的中的难点进行分析、给出相应的解决方案。

课程大纲
课程亮点
本课程重点分析讲解工业领域的难点,包括了小缺陷检测,超大图小缺陷检测,对比度不明显的缺陷检测、以及少样本的缺陷检测等工业难点,并给出相应的案例解决方案。除此之外,本课程还简单介绍pytorch 框架和opencv 基础功能,以及各种工业算法中的评价指标和CV大模型在工业场景中的简单应用,拓展丰富大家做项目的思路。
小目标检测案例:

低对比度案例:

少量样本学习的案例:(10张训练数据集)

异常检测案例:

学后收获
对工业检测算法的应用有较为深刻的认识;
独立解决工业缺陷检测中场景的难点;
收获一套完整的工业缺陷检测算法;
面向人群
刚入门机器视觉的本科生、研究生,重点是企业视觉开发人员;
想要解决常见工业难点的学员;
使用机器视觉落地工业缺陷检测项目的学员。
课程特色
以解决工业场景疑难问题为主,辅助基础知识学习。
Cv大模型在工业领域的探讨和尝试。
对算法部署的引申以及做项目时需要关注考虑的问题。
课程答疑
本课程答疑主要在本课程对应的鹅圈子中答疑,学员学习过程中,有任何问题,可以随时在鹅圈子中提问。


备注:以上图片和视频部分来自网络,如果侵犯了您的权益,还请联系删除!