ICCV‘25开源 | 复旦新作BézierGS:动态+静态城市场景重建双重SOTA!

点击下方卡片,关注「3D视觉工坊」公众号
选择星标,干货第一时间送达

来源:3D视觉工坊

「3D视觉从入门到精通」知识星球(点开有惊喜) !星球内新增20多门3D视觉系统课程、入门环境配置教程、多场顶会直播、顶会论文最新解读、3D视觉算法源码、求职招聘等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入

图片

0. 论文信息

标题:BézierGS: Dynamic Urban Scene Reconstruction with Bézier Curve Gaussian Splatting

作者:Zipei Ma, Junzhe Jiang, Yurui Chen, Li Zhang

机构:Fudan University、Shanghai Innovation Institute

原文链接:https://arxiv.org/abs/2506.22099

代码链接:https://github.com/fudan-zvg/BezierGS

1. 导读

街道场景的真实感重建对于开发真实世界的自动驾驶模拟器至关重要。大多数现有方法依赖于对象姿态注释,使用这些姿态来重建动态对象,并在渲染过程中移动它们。这种对高精度对象注释的依赖限制了大规模和广泛的场景重建。为了应对这一挑战,我们提出了贝塞尔曲线高斯分布(BézierGS ),它使用可学习的贝塞尔曲线来表示动态对象的运动轨迹。这种方法充分利用动态对象的时间信息,并通过可学习的曲线建模,自动纠正姿态误差。通过引入对动态对象绘制和曲线间一致性约束的额外监督,实现了场景元素的合理精确分离和重建。在Waymo开放数据集和nuPlan基准上的大量实验表明,BézierGS在动态和静态场景组件重建以及新颖的视图合成方面都优于最先进的替代方法。

2. 效果展示

我们提出的Bezier Gs有效地捕捉动态元素的运动,同时准确地区分场景中的静态和动态组件。我们染了一个动态车辆实例在三个不同的时间戳,并可视化其高斯原语的轨迹,展示了模型准确表示目标轨迹的能力。(b)通过利用我们对动态对象的显式建模,我们的方法实现了灵活的场景操作,例如移除动态实例展示了其高保真度重建和编辑动态环境的能力。。

Waymo数据集定性比较。Bezier Gs以高保真度有效地重构静态和动态元素,同时实现静态和动态组件之间的清晰分离。

3. 引言

建模动态三维街道场景是现代自动驾驶技术的基石,其能为感知、预测和运动规划等任务提供逼真且可控的仿真环境。随着需要实时传感器反馈的端到端自动驾驶系统的兴起,对真实世界仿真闭环评估的需求变得愈发迫切。高质量场景重建为闭环评估构建了仿真环境,同时能够安全且经济高效地模拟关键极端场景。

尽管在小规模场景逼真重建方面已取得显著成果,但驾驶场景具有大规模和高度动态特性,这使得有效的三维场景建模更具挑战性。为应对这些挑战,大多数现有方法依赖于动态物体的手动位姿标注,以区分静态背景和运动物体。通常,动态物体会在其各自居中的规范空间中进行重建,然后根据已知位姿在渲染时放置到背景场景空间中。然而,动态物体的手动标注始终存在误差和遗漏,这限制了这些方法在不同数据集多样化场景中的适用性。

其他不需要动态标注的方法[1,15]则采用自监督方式学习动态物体的运动规律。例如,S3Gaussian使用时空分解网络隐式建模物体运动轨迹,但在轨迹优化和建模方面存在挑战。PVG通过拼接具有周期性振动的片段来构建长轨迹,但周期性振动模式和不透明度衰减与真实运动不符,且轨迹分割难以充分利用同一物体在时间维度上的一致性。

为克服上述局限性,本文提出一种名为贝塞尔曲线高斯溅射(BezierGS)的新型动态场景表示方法,以实现自动驾驶应用的高保真新视角合成性能。该方法基于高效的三维高斯溅射技术,通过可学习的贝塞尔曲线显式建模场景中动态高斯基元的运动轨迹和速度,同时使用静态三维高斯基元构建背景信息。可学习的轨迹曲线可补偿动态物体标注误差,且显式曲线轨迹便于优化,并充分利用同一物体在不同时间戳的时序一致性。我们根据重建物体对动态高斯基元进行分组,并引入分组间曲线一致性损失,有效利用同一物体的几何约束。此外,我们还对动态高斯基元的渲染施加额外监督,以增强动态组件的重建效果,便于后续自动驾驶场景编辑任务。

4. 主要贡献

本文的主要贡献如下:(i) 提出贝塞尔曲线高斯溅射(BezierGS)方法,用于大规模动态城市场景重建。通过显式可学习的贝塞尔曲线轨迹建模,我们优雅地表示了动态场景,消除了街道场景重建中对物体标注精度的依赖。(ii) 开发了一种新型分组间曲线一致性损失,将构成同一物体的高斯基元轨迹相关联,有效利用了同一物体的几何约束。(iii) 在两个大规模基准数据集(Waymo和nuPlan)上开展的广泛实验表明,BezierGS在场景重建和新视角合成方面均优于所有现有最先进方法。

5. 方法

在本节中,我们提出BezierGS框架,该框架能够精确重建三维场景,并从城市场景中任意期望的时间戳和相机位姿合成新视角。我们结合静态和动态高斯基元分别重建场景的背景和前景,并使用可学习的贝塞尔曲线对动态高斯基元的轨迹进行建模。最后,我们讨论用于优化场景的各种函数,这些函数增强了物体的几何表示,并实现了动态与静态组件的精确分离。我们的整体流程如图2所示。

6. 实验结果

7. 总结

我们已经提出了贝塞尔曲线高斯飞溅,一个明确的场景表示动态城市街道场景重建。通过使用可显式学习的贝塞尔曲线来模拟动态对象的运动轨迹,我们的模型可以自动校正姿态错误从而消除对手动注释的依赖。曲线间一致性约束的引入增强了动态高斯原语的时间和地理一致性。通过对动态对象渲染的额外监督,我们的方法能够合理和准确地分离和重建场景元素。我们的方法显着优于最先进的方法在Waymo开放数据集和nuPlan基准。

对更多实验结果和文章细节感兴趣的读者,可以阅读一下论文原文~

本文仅做学术分享,如有侵权,请联系删文。

3D视觉硬件,官网:www.3dcver.com

3D视觉学习圈子

「3D视觉从入门到精通」知识星球(点开有惊喜) !星球内新增20多门3D视觉系统课程、入门环境配置教程、多场顶会直播、顶会论文最新解读、3D视觉算法源码、求职招聘等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入

3D视觉全栈学习课程:www.3dcver.com

3D视觉交流群成立啦,微信:cv3d001

添加微信:cv3d001,备注:方向+单位,邀你入3D视觉交流群!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值