Flink 简介

Apache Flink 是一个开源的流处理框架,它具有高吞吐量、低延迟、精确一次(exactly-once)状态一致性等诸多优秀特性。

  • 流批一体:它能够以统一的方式处理流式数据和批量数据,既可以对实时持续流入的数据流进行高效处理,也可以像传统批处理那样对静态数据集进行操作,打破了流处理和批处理之间的界限。
  • 状态管理:提供了强大且易用的状态管理机制,允许在处理数据过程中保存和更新中间状态,方便实现诸如窗口聚合、复杂事件处理等功能,并且能保证状态的一致性,在遇到故障等情况时可以准确恢复状态。
  • 事件时间处理:很好地支持基于事件实际发生时间来进行处理,而不是数据到达系统的时间,这对于处理乱序数据等场景极为重要,能确保计算结果的准确性。
  • 灵活的窗口机制:拥有丰富多样的窗口类型,比如滚动窗口、滑动窗口、会话窗口等,可以根据不同的业务需求灵活地对数据进行分组和聚合操作。

Flink 在很多领域都有广泛应用,例如实时数据分析、实时监控告警、实时推荐系统等,能够助力企业快速、准确地处理海量实时数据并获取有价值的洞察。

Flink 简单 Demo 示例(使用 Java 语言基于 Flink 的 DataStream API,统计单词出现次数)

以下是一个简单的基于 Flink 的示例代码,展示了如何从一个文本流中统计单词出现的次数:

  1. 引入依赖
    首先需要在项目的pom.xml(如果是 Maven 项目)中添加 Flink 相关依赖,示例如下:
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-java</artifactId>
    <version>1.16.0</version>  <!-- 根据实际情况选择合适版本 -->
</dependency>
<dependency>