讲清楚什么是线搜索line search

本文深入解析优化理论中的两大策略:线搜索(Line Search)与信任域(Trust Region)。重点介绍了牛顿法及其在求解函数极值问题中的应用,同时探讨了线搜索策略下牛顿法的具体流程,为读者提供了清晰的理论框架。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

翻译自[1]
在这里插入图片描述
翻译如下:
优化理论中包含两种策略:
1.line search
2.trust region

牛顿法(求函数的解集)和二阶牛顿法(求函数最小值)都是用来寻找线搜索中的梯度方向的,换言之,两种牛顿法是line search的子集。‘
下面的Example use就是线搜索的流程。
第3-5 step其实就是牛顿法以及反向传播的流程,只不过在line search上进行修改。

总结:line search其实就是指代某个算法,资料中提到这个的时候,也就是起到一个略装逼的作用。

Reference:
[1]https://en.wikipedia.org/wiki/Line_search

<think>嗯,用户让我讲讲正则表达式中的match和group。首先,我需要确认用户对正则表达式的基础知识了解多少。可能他们已经在使用正则表达式,但对这两个方法的具体用法和区别不太清楚。用户之前询问过一段Python代码,其中涉及到了正则表达式的match和group方法,所以现在他们可能想深入理解这些方法的工作原理。 首先,我需要解释re.match()的作用。这个方法是用来从字符串的开头开始匹配正则表达式,如果开头不匹配,即使后面有符合的内容也会返回None。这点和re.search()不同,search会扫描整个字符串。用户可能在代码中看到match被用来过滤文件名,所以需要强调match是从头开始匹配的,因此他们的正则表达式可能需要以特定模式开头,比如例子中的frame_(\d+).png。 接下来是group()方法。用户可能知道group(0)返回整个匹配,但group(1)及之后的数字代表捕获组。需要说明捕获组的概念,如何用小括号来创建,以及如何通过group(1)来获取第一个捕获组的内容。在用户之前的例子中,他们用group(1)提取数字部分进行排序,所以这里要强调group在数据提取中的作用。 可能用户在实际使用中会遇到多个捕获组的情况,或者需要处理可选的分组。比如电话号码可能有区号,这时候捕获组的编号就很重要。此外,需要提到命名分组,虽然用户的问题中没有提到,但作为补充知识可能会有帮助。 还要注意错误处理。如果正则表达式没有匹配到,调用group()会导致AttributeError,因此在代码中需要确保匹配成功后再调用group。用户之前的代码在sorted的key函数中使用了pattern.match(x).group(1),这可能存在潜在的问题,如果列表中有未匹配的项,但因为在生成列表时已经过滤了不匹配的项,所以这里不会出错。但需要提醒用户注意这一点,避免在其他情况下出现错误。 用户的应用场景可能是处理文件名中的数字排序,所以需要给出具体的例子,说明如何正确使用match和group来提取数字,并转换为整数进行排序。同时,比较字符串排序和数值排序的区别,说明为什么需要这样做。 可能用户还不太清楚正则表达式中贪婪匹配和懒惰匹配的影响,但这个问题主要集中在match和group,所以暂时不需要深入。但如果有时间的话,可以简要提及,确保捕获组捕获的是正确的部分。 最后,总结match和group的常见用法,强调它们的适用场景和注意事项,帮助用户巩固理解,并避免常见错误。需要确保解释清晰,结构合理,逐步引导用户理解这两个方法的作用和用法。</think>好的!我将分步讲解正则表达式中 `match()` 和 `group()` 的核心用法与区别,通过具体示例帮助理解。 --- ### **1. `re.match()` 方法** #### ▐ **核心特性** - **起点限制**:**必须从字符串开头开始匹配**(类似正则表达式自动添加 `^` 锚点) - **返回值**: - 匹配成功 ➔ 返回 `Match` 对象 - 匹配失败 ➔ 返回 `None` #### ▐ **示例代码** ```python import re text = "abc123xyz" pattern = re.compile(r"abc\d+") # 匹配以abc开头的数字 result1 = pattern.match("abc123xyz") # 匹配成功 result2 = pattern.match("xyzabc123") # 匹配失败(不在开头) ``` #### ▐ **典型应用场景** ```python # 验证字符串格式(如:检查是否以指定前缀开头) if re.match(r"https://", url): print("安全链接") ``` --- ### **2. `group()` 方法** #### ▐ **核心作用** - 从 `Match` 对象中**提取捕获组内容** - **编号规则**: - `group(0)`:**整个匹配内容** - `group(1)`:**第1个括号捕获组** - `group(2)`:第2个捕获组,依此类推 #### ▐ **基础语法** ```python match.group() # 等价于 group(0) match.group(n) # 获取第n个捕获组 match.groups() # 返回所有捕获组的元组 ``` #### ▐ **示例解析** ```python text = "订单号:ABC-2023-1001" pattern = re.compile(r"(\w+)-(\d{4})-(\d+)") match = pattern.match(text) if match: print(match.group(0)) # 输出:ABC-2023-1001 print(match.group(1)) # 输出:ABC print(match.group(2)) # 输出:2023 print(match.groups()) # 输出:('ABC', '2023', '1001') ``` --- ### **3. 关键对比** | 特性 | `re.match()` | `re.search()` | |---------------------|---------------------------------------|---------------------------------------| | **匹配起点** | 必须从字符串开头开始 | 扫描整个字符串 | | **典型用途** | 验证格式、提取开头数据 | 查找任意位置的匹配 | | **性能** | 更快(遇到开头不匹配立即返回) | 较慢(需扫描整个字符串) | --- ### **4. 高级用法** #### ▐ **命名捕获组** ```python # 使用 (?P<name>...) 语法 text = "日期:2023-08-15" pattern = re.compile(r"(?P<year>\d{4})-(?P<month>\d{2})-(?P<day>\d{2})") match = pattern.search(text) print(match.group("year")) # 输出:2023 print(match.groupdict()) # 输出:{'year': '2023', 'month': '08', 'day': '15'} ``` #### ▐ **条件分支匹配** ```python # 用 | 实现分支选择 pattern = re.compile(r"iPhone(\d+)|Android(\d+)") match = pattern.match("iPhone15") if match: print(match.group(1)) # 输出:15(iPhone组) print(match.group(2)) # 输出:None(Android组未匹配) ``` --- ### **5. 常见错误处理** ```python # 错误示例:未判断是否匹配直接调用 group() match = re.match(r"\d+", "abc") # 返回 None # print(match.group()) # 触发 AttributeError # 正确做法 if match := re.match(r"\d+", "123"): print(match.group()) ``` --- ### **6. 实战应用场景** #### ▐ **日志解析** ```python log_line = "2023-08-15 14:30:22 [ERROR] Service unavailable" pattern = re.compile(r"(\d{4}-\d{2}-\d{2}) (\d{2}:\d{2}:\d{2}) \[(\w+)\] (.+)") match = pattern.match(log_line) if match: date, time, level, message = match.groups() print(f"{level}级别告警于{date} {time}: {message}") ``` #### ▐ **URL参数提取** ```python url = "/products/42?color=red&size=XL" pattern = re.compile(r"/products/(?P<id>\d+)\?.*") match = pattern.match(url) if match: print(f"商品ID: {match.group('id')}") # 输出:商品ID: 42 ``` --- 通过以上解析,可以更清晰地理解: - `match()` 是**严格的前缀匹配工具** - `group()` 是**数据提取的核心方法** - 结合正则表达式的分组功能,能高效处理结构化文本数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值