[pytorch] --- pytorch环境配置

本教程环境搭建基于windows不带GPU和ubuntu带GPU

1 安装miniconda

1.1 miniconda与anaconda的区别

包含的包:
  • Anaconda: 是一个较大的发行版,预装了大量的科学计算和数据分析相关的 Python 包。
  • Miniconda: 更轻量级,只包含 Conda、Python 和它们的依赖,以及少量常用包。
安装体积:
  • 由于预装了许多包,Anaconda 的安装体积比 Miniconda 大很多。
灵活性:
  • Miniconda 提供了更大的灵活性,因为你可以只安装需要的包,从而使环境保持轻量。
  • Anaconda 则适合那些希望一站式安装所有数据科学需要的包的用户。

1.2 安装miniconda

miniconda下载地址

https://docs.anaconda.com/miniconda/miniconda-other-installer-links/#windows-installers

下载好包之后无脑点next,需要注意的是,这里需要勾选,添加miniconda到环境变量
在这里插入图片描述
安装好miniconda之后,win+R, 打开cmd窗口,输入conda --version检验conda是否安装完成
在这里插入图片描述

1.3 coda的使用

1.3.0 conda更还源

anaconda安装完成之后请切换到国内的源来提高下载速度 ,命令如下:

conda config --remove-key channels
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple

1.3.1 查看当前conda创建的虚拟环境

// conda env list指令的作用是列出当前Miniconda或Anaconda安装下所有已创建的虚拟环境
conda env list

在这里插入图片描述

1.3.2 conda创建虚拟环境

// -n 表示制定虚拟环境的名字,python=3.6表示指定python版本
conda create -n pytorch python=3.6

1.3.3 激活创建的虚拟环境

conda activate pytorch

在这里插入图片描述
可以看到激活虚拟环境之后,左侧显示有(pytorch)

1.3.4 查看当前虚拟环境有哪些包

pip list 

在这里插入图片描述

2 安装pytorch

pytorch官网有详细的安装指令,https://pytorch.org/
当前我的电脑环境没有gpu,指令选择这行指令复制既可
在这里插入图片描述
在这里插入图片描述

检验pytorch是否安装好
在这里插入图片描述

3 pycharm安装与使用

3.1 pycharm下载与安装

pycharm官网下载地址

https://www.jetbrains.com/pycharm/download/#section=windows

在这里插入图片描述

这里选择社区版进行下载即可

安装过程中这几个选项请务必选上,以避免后面不必要的麻烦
在这里插入图片描述

3.2 pycharm与conda虚拟环境配合使用

安装完毕之后找到我们的代码,通过pycharm打开即可
在这里插入图片描述

打开源码之后,我们在软件的右下角找到interpreter settings添加刚才建立的虚拟环境
在这里插入图片描述
在弹出的窗口中选择add interpreter->add local interpreter
在这里插入图片描述
在这里插入图片描述
设置好之后,回到pycharm编辑器可以看到这里已经变成了我们上一步设置的pytorch虚拟环境
在这里插入图片描述

4 jupyter安装与使用

在pytorch虚拟环境中安装jupter环境

conda install nb_conda

安装完成之后, 在终端输入jupyter notebook
在这里插入图片描述
会弹出一个网页,我们使用pytorh虚拟环境创建工程
在这里插入图片描述

5 linux如何搭建环境

本教程中使用ubuntu22.04版本

5.0 apt换源

跟换apt源为清华源
https://mirror.tuna.tsinghua.edu.cn/help/ubuntu/

# 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ noble main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ noble main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ noble-updates main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ noble-updates main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ noble-backports main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ noble-backports main restricted universe multiverse

# 以下安全更新软件源包含了官方源与镜像站配置,如有需要可自行修改注释切换
deb http://security.ubuntu.com/ubuntu/ noble-security main restricted universe multiverse
# deb-src http://security.ubuntu.com/ubuntu/ noble-security main restricted universe multiverse

# 预发布软件源,不建议启用
# deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ noble-proposed main restricted universe multiverse
# # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ noble-proposed main restricted universe multiverse

5.1 ubuntu环境如何查看gpu显卡信号

1.查看显卡基本信息

decre@decre:~$ lspci -Dnn | grep 'NVIDIA'
0000:01:00.0 3D controller [0302]: NVIDIA Corporation TU117GLM [T600 Mobile] [10de:1fba] (rev a1)

安装好显卡之后可以这样查看

decre@decre:~$ lspci -nnk -d 10de:1fba
01:00.0 3D controller [0302]: NVIDIA Corporation TU117GLM [T600 Mobile] [10de:1fba] (rev a1)
	Subsystem: Lenovo TU117GLM [T600 Mobile] [17aa:22d9]
	Kernel driver in use: nvidia
	Kernel modules: nvidiafb, nouveau, nvidia_drm, nvidia

2.查看gpu使用情况

// 如果没有安装显卡驱动的话,不会支持nvidia-smi指令
nvidia-smi

5.2 安装显卡驱动

方法一:直接使用 「软件和更新」安装显卡驱动
1 虽然没有安装好显卡驱动,不支持nvidia-smi指令,但是nvidia-detector指令是可以识别的
在这里插入图片描述
2 打开「软件和更新」-》附加驱动
默认安装的是最下面的开源的驱动,我们安装test后缀的驱动
在这里插入图片描述安装好之后在about中可以看到GPU已经正常显示
在这里插入图片描述
方法二:使用nvidia官方推荐的驱动安装
去官网搜索,https://www.nvidia.cn/drivers/lookup/,选择对应的信号

搜索结果如下,直接下来安装即可
在这里插入图片描述
检验nvidia驱动是否安装好

nvidia-smi

安装好可以看到类似这样的显示
在这里插入图片描述

5.3 安装好nvidia驱动之后,wifi/blue-teeth等不可用

问题描述: Ubuntu默认使用的nouveau驱动,需要更换成NVIDIA相应的驱动,在软件和更新里面一键安装了NVIDIA-driver-535-server之后,发现wifi、蓝牙等设备消失了

问题分析: 在Ubuntu22.04更新了显卡驱动之后,linux内核也随之更新且默认进入的linux内核变为该内核(原先内核版本:6.5.0-18 ==> 更新后内核版本:6.8.0-40),但更新不彻底,导致有一些配套软件驱动等等未安装在这个新内核中。

解决办法: 在Terminal中使用命令:uname -r 查看内核版本,我的更新后版本为6.5.0-26(可根据自己的版本进行下载),来到清华镜像网站:https://mirrors.tuna.tsinghua.edu.cn/ubuntu/pool/main/l/linux-hwe-6.8/ 下载下面的驱动模块:

在这里插入图片描述然后用U盘拷贝到不能上网的Ubuntu22.04系统上,利用

sudo dpkg -i linux-modules-extra-6.5.0-26-generic_6.5.0-26.26~22.04.1_amd64.deb

命令安装后 sudo reboot就可以重新看到WiFi以及蓝牙等设备图标了。

5.4 安装cuda

5.4.1 下载CUDA

前往NVIDIA官网https://developer.nvidia.com/cuda-toolkit-archive,选择和NVIDIA显卡驱动版本相适应的CUDA版本,我这里选择12.2.0版本。
在这里插入图片描述
在跳转出来的界面选择系统信息和平台信息,我是Intel的CPU,Ubuntu22.04系统,依次选择Linux,X86_64,Ubuntu,22.04。,并执行给出的安装指令
在这里插入图片描述

5.4.2 安装CUDA

执行上面的安装指令

sudo sh cuda_12.2.0_535.54.03_linux.run

等待页面跳转,在新的页面,使用上下键移动光标,使用Enter键选择Continue。

在这里插入图片描述之后,输入“accept”
在这里插入图片描述重点来了!!!在这个界面,使用空格或者Enter键,取消选择Driver,即让方括号中没有X,然后移动光标到Install,使用Enter键进行安装。如果这里不取消Driver,会覆盖安装NVIDIA驱动,会导致诸如黑屏等等不确定的问题。
在这里插入图片描述安装完成后显示如下界面,提醒我们添加环境变量。

在这里插入图片描述

5.4.3 添加环境变量

根据上述提示,在~/.bashrc中添加环境变量

export PATH=/usr/local/cuda-12.2/bin:${PATH:+${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64{LD_LIBRARY_PATH:+${LD_LIBRARY_PATH}}

5.4.4 测试CUDA是否安装成功

使用Ctrl+Alt+T新建终端,输入以下指令,显示CUDA版本信息,表明CUDA安装成功。
在这里插入图片描述

5.5 安装cudnn

5.5.1 下载cuDNN

在NVIDIA官网https://developer.nvidia.com/cudnn下载和CUDA版本对应的cuDNN。
在这里插入图片描述在弹出的页面中进行选择,并执行下面的安装指令
在这里插入图片描述

5.5.2 测试cuDNN是否安装成功

使用cd命令进入指定目录,运行bandwidthTest程序,显示如下信息,说明cuDNN安装成功
在这里插入图片描述
执行
在这里插入图片描述

同样可以看到
在这里插入图片描述

5.6 miniconda安装与使用

5.6.0 安装miniconda

安装miniconda
miniconda下载地址

https://docs.anaconda.com/miniconda/miniconda-other-installer-links/#windows-installers

下载好包之后安装即可
conda添加到环境变量
安装的时候一定要注意conda的安装路径,不要安装在root目录否则很麻烦

export PATH=/home/decre/miniconda3/bin:${PATH}

conda更换源
anaconda安装完成之后请切换到国内的源来提高下载速度 ,命令如下:
vim ~/.condarc,添加如下内容

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

5.6.1 查看当前conda创建的虚拟环境

// conda env list指令的作用是列出当前Miniconda或Anaconda安装下所有已创建的虚拟环境
conda env list

在这里插入图片描述

5.6.2 conda创建虚拟环境

// -n 表示制定虚拟环境的名字,python=3.6表示指定python版本
conda create -n pytorch python=3.6

5.6.3 激活创建的虚拟环境

conda activate pytorch

在这里插入图片描述
输入conda init后返回No action taken.
在这里插入图片描述

解决方法

    输入source activate,后发现前面多了(base)
    输入conda activate xxx(此处为自定义的环境名称),后发现(base)变为(xxx)

5.6.4 查看当前虚拟环境有哪些包

pip list 

在这里插入图片描述

5.6.5 在conda中安装pytorch

去pytorch官网查看对应的版本并选择安装指令
在这里插入图片描述检验pytorch环境安装是否成功
在conda虚拟环境中进入python,执行下来指令
在这里插入图片描述

若torch.cuda.is_available()返回true,则表示gpu可以被pytorch调用

参看链接:
https://blog.csdn.net/m0_55127902/article/details/135677560


windows版本不带GPU的可以正常run
ubuntu版本带GPU的环境也可以正常run
至此整个开发环境搭建完成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Overboom

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值