Paper:可解释性之SHAP之《A Unified Approach to Interpreting Model Predictions—解释模型预测的统一方法》论文解读与翻译

本文翻译并解读了《A Unified Approach to Interpreting Model Predictions》论文,介绍了SHAP值作为评估特征重要性的方法。SHAP能够解释黑盒模型预测,通过为每个特征分配重要性值来量化其对模型预测的贡献。文章涵盖了LIME、DeepLIFT等解释模型的多种方法,并探讨了SHAP的计算效率、一致性以及解释分类差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Paper:可解释性之SHAP之《A Unified Approach to Interpreting Model Predictions—解释模型预测的统一方法》论文解读与翻译

导读:2017年11月25日,来自华盛顿大学的Scott M. Lundberg和Su-In Lee在《解释模型预测的统一方法》论文中,提出了SHAP值作为特征重要性的统一度量。SHAP可以为每个特征分配一个特定预测的重要性值。它的意义在于解释现代机器学习中大多数的黑盒模型,为效果好的ML模型量化各个特征的贡献度

目录

《A Unified Approach to Interpreting Model  Predictions》论文解读与翻译

Abstract

1 Introduction

2 Additive Feature Attribution Methods

2.1 LIME

2.2 DeepLIFT  

2.3 Layer-Wise Relevance Propagation  

2.4 Classic Shapley Value Estimation

3 Simple Properties Uniquely Determine Additive Feature Attributions  

4 SHAP (SHapley Additive exPlanation) Values  

4.1 Model-Agnostic Approximations  

Kernel SHAP (Linear LIME + Shapley values)

4.2 Model-Specific Approximations  

5 Computational and User Study Experiments  

5.1 Computational Efficiency  

5.2 Consistency with Human Intuition  

5.3 Explaining Class Differences  

6 Conclusion

Acknowledgements  

References


相关文章
Paper:《A Unified Approach to Interpreting Model Predictions—解释模型预测的统一方法》论文解读与翻译

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值