LLMs之Tokenizer:大模型核心技术—数据预处理技巧之分词算法的简介、常用算法(对比Transformer中的三种分词算法【Unigram→Word Piece→BPE】)之详细攻略

本文深入探讨了大模型如GPT和BERT的预处理关键技术——分词算法,包括Unigram、WordPiece和BPE(Byte Pair Encoding)。Unigram基于单词编码,通过UnigramLM训练;WordPiece采用语言建模训练,常用于BERT系列;BPE则在字节级别进行最优切分,常见于Transformer-XL和GPT-3。文章还介绍了自定义实现Unigram编码以及使用SentencePiece库进行WordPiece分词的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 大型模型构建技术与工具 #### 技术框架概述 大型语言模型(LLMs)的开发依赖于一系列先进的技术和工具来支持其训练、优化和服务部署。这些技术涵盖了从数据处理到模型推理的各个环节。 #### 数据预处理与管理 为了有效训练大规模的语言模型,高质量的数据集至关重要。这通常涉及大量的文本清洗、分词以及格式转换工作。对于中文语料库而言,还需要特别考虑字符编码和繁简体转换等问题[^1]。 #### 训练平台与硬件加速器 现代的大规模机器学习项目往往需要强大的计算资源作为支撑。GPU集群因其并行计算能力而成为首选;TPU则是谷歌专门为神经网络设计的一种专用集成电路,在某些场景下可以提供更高的性价比。此外,云服务平台如AWS SageMaker、阿里云PAI等提供了灵活便捷的方式来获取所需的算力资源[^2]。 #### 开源框架的选择 目前主流用于构建大模型的深度学习框架有PyTorch 和 TensorFlow 。两者都拥有活跃社区维护和支持,并且各自具备独特优势: - **PyTorch**: 动态图机制使得调试更加容易,适合研究阶段快速迭代实验; - **TensorFlow**: 更加成熟稳定的企业级解决方案,尤其擅长分布式训练环境下的性能调优。 #### 模型架构创新 除了基础算法外,针对特定应用场景还会引入一些新颖的设计理念和技术手段。例如Transformer结构通过自注意力机制大幅提升了自然语言理解的效果;而在实际工程项目里,则会进一步探索轻量化版本或是多模态融合等方式以满足不同业务需求。 ```python import torch from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') text = "这是一个测试例子" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) print(output.last_hidden_state) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值