Py之llama-parse:llama-parse(高效解析和表示文件)的简介、安装和使用方法、案例应用之详细攻略

Py之llama-parse:llama-parse(高效解析和表示文件)的简介、安装和使用方法、案例应用之详细攻略

目录

llama-parse的简介

llama-parse的安装和使用方法

1、安装

2、使用方法

第一步,获取API 密钥

第二步,安装LlamaIndex、LlamaParse

LLM之RAG之LlaMAIndex:llama-index(一块轻快构建索引来查询本地文档的数据框架神器)的简介、安装、使用方法之详细攻略

第三步,解析第一个 PDF 文件

第四步,将解析器集成为 SimpleDirectoryReader 中的默认 PDF 加载器:

llama-parse的案例应用


llama-parse的简介

2024年4月15日正式发布,LlamaParse 是由 LlamaIndex 创建的一个 API,用于高效解析和表示文件,以便使用 LlamaIndex 框架进行高效检索和上下文增强。

LlamaParse 可以直接与 LlamaIndex 集成。免费计划每天最多处理 1000 页。付费计划每周免费处理 7000 页,超过部分每页收费 0.3 美分。

llama-parse的安装和使用方法

1、安装

pip install -i https://mirrors.aliyun.com/pypi/simple llama-parse

pip install -i https://mirrors.aliyun.com/pypi/simple -qU llama-parse

# -q:这个参数表示安静模式(quiet),它会减少输出的信息只显示错误信息。
-U:这个参数表示升级模式(upgrade),它会升级指定的软件包到最新版本。

2、使用方法

第一步,获取API 密钥

首先,登录并从 LlamaCloud 获取一个 API 密钥。

第二步,安装LlamaIndex、LlamaParse

然后,确保你安装了最新版本的 LlamaIndex。
注意:如果你是从 v0.9.X 升级,我们建议你遵循我们的迁移指南,并且先卸载之前的版本。

pip uninstall llama-index  # 如果从 v0.9.x 或更早版本升级,请运行此命令
pip install -U llama-index --upgrade --no-cache-dir --force-reinstall

最后,安装 LlamaParse 包:
pip install llama-parse

LLM之RAG之LlaMAIndex:llama-index(一块轻快构建索引来查询本地文档的数据框架神器)的简介、安装、使用方法之详细攻略

LLM之RAG之LlaMAIndex:llama-index(一块轻快构建索引来查询本地文档的数据框架神器)的简介、安装、使用方法之详细攻略_llamaindex原理-CSDN博客

第三步,解析第一个 PDF 文件

现在你可以运行以下代码来解析你的第一个 PDF 文件:


现在你可以运行以下代码来解析你的第一个 PDF 文件:
import nest_asyncio
nest_asyncio.apply()
from llama_parse import LlamaParse

parser = LlamaParse(
    api_key="llx-...",  # 也可以在环境变量中设置为 LLAMA_CLOUD_API_KEY
    result_type="markdown",  # 可以选择 "markdown" 或 "text"
    num_workers=4,  # 如果传递多个文件,则在 `num_workers` 个 API 调用中拆分
    verbose=True,
    language="en",  # 可以选择定义语言,默认=en
)

# 同步解析单个文件
documents = parser.load_data("./my_file.pdf")
# 同步解析多个文件
documents = parser.load_data(["./my_file1.pdf", "./my_file2.pdf"])
# 异步解析单个文件
documents = await parser.aload_data("./my_file.pdf")
# 异步解析多个文件
documents = await parser.aload_data(["./my_file1.pdf", "./my_file2.pdf"])
与 SimpleDirectoryReader 一起使用

第四步,将解析器集成为 SimpleDirectoryReader 中的默认 PDF 加载器:

第四步,将解析器集成为 SimpleDirectoryReader 中的默认 PDF 加载器:
import nest_asyncio
nest_asyncio.apply()

from llama_parse import LlamaParse
from llama_index.core import SimpleDirectoryReader

parser = LlamaParse(
    api_key="llx-...",  # 也可以在环境变量中设置为 LLAMA_CLOUD_API_KEY
    result_type="markdown",  # 可以选择 "markdown" 或 "text"
    verbose=True,
)

file_extractor = {".pdf": parser}
documents = SimpleDirectoryReader(
    "./data", file_extractor=file_extractor
).load_data()
SimpleDirectoryReader 的完整文档可以在 LlamaIndex 文档中找到。

llama-parse的案例应用

持续更新中……

### LabelImg LLaMA-Factory 的使用教程及集成方法 #### LabelImg 使用教程 LabelImg 是一个用于图像标注的图形化工具,支持多种格式的输出,广泛应用于计算机视觉任务中的数据准备阶段。以下是其基本使用步骤: 1. 安装 LabelImg: ```bash pip install labelimg ``` 或者从源码安装: ```bash git clone https://github.com/tzutalin/labelImg cd labelImg pip install pyqt5 lxml make qt5py3 python labelImg.py ``` 2. 启动工具: ```bash labelImg ``` 启动后会打开一个 GUI 界面。 3. 数据标注: - 打开图像文件夹。 - 使用鼠标框选目标区域,并输入标签名称。 - 保存标注结果为 Pascal VOC 或 YOLO 格式。 #### LLaMA-Factory 使用教程 LLaMA-Factory 是一个专为大模型训练设计的开源平台[^1]。以下是其基本使用流程: 1. 克隆项目并安装依赖: ```bash git clone https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -r requirements.txt ``` 2. 配置环境: 根据官方文档[^1],配置所需的硬件环境(如 GPU)数据集路径。 3. 训练模型: 使用提供的脚本启动训练任务: ```bash python train.py --config configs/gpt2-base.json ``` 4. 测试模型: 在完成训练后,可以使用测试脚本评估模型性能: ```bash python test.py --model_path <path_to_model> ``` #### LabelImg LLaMA-Factory 的集成方法 为了将 LabelImg 的标注数据与 LLaMA-Factory 的训练流程结合,可以按照以下方式操作: 1. 数据准备阶段: 使用 LabelImg 对图像进行标注,生成 Pascal VOC 或 YOLO 格式的标注文件。然后通过脚本将这些标注文件转换为 LLaMA-Factory 支持的格式[^3]。 2. 模型训练阶段: 将转换后的数据集加载到 LLaMA-Factory 的训练流程中。确保数据集的结构符合 LLaMA-Factory 的要求,并在配置文件中指定正确的路径。 3. 模型测试阶段: 使用测试脚本验证模型在标注数据上的表现,调整超参数以优化性能。 ```python # 示例:将 Pascal VOC 格式转换为 LLaMA-Factory 支持的格式 import xml.etree.ElementTree as ET import os def convert_voc_to_llama(voc_dir, output_dir): for file in os.listdir(voc_dir): if file.endswith(".xml"): tree = ET.parse(os.path.join(voc_dir, file)) root = tree.getroot() # 提取标注信息并保存为 LLaMA-Factory 格式 # ... ``` ### 注意事项 - 确保标注数据的质量一致性,这对模型训练效果至关重要。 -使用 TensorRT-LLM 的功能模块时[^2],可以根据具体需求选择合适的层或组件进行组装。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值