Py之shap:shap库的简介、安装、使用方法之详细攻略

本文深入介绍了Python中的shap库,包括库的背景、安装、使用方法以及一系列的案例应用。从SHAP算法的基本概念到实际的模型解释,涉及树集成模型、深度学习模型和通用模型的解释方法。通过多个数据集的案例,如波士顿房价、人口普查收入预测等,展示了如何利用shap进行模型可解释性分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Py之shap:shap库的简介、安装、使用方法之详细攻略

目录

相关文章

XAI之SHAP:SHAP算法(How—每个特征如何重要/解释单个样本的预测)的简介(背景/思想/作用/原理/核心技术点/优缺点)、常用工具库、应用案例之详细攻略

shap库的简介

shap库的安装

20220702更新

20230523更新

shap库的使用方法

Python之shap:深度剖析shap.datasets.adult()源码中的X,y和X_display,y_display输出数区别

Python之shap:shap.force_plot函数的源码解读之详细攻略

Py之shap:shap.explainers.shap_values函数的简介、解读(shap_values[1]索引为1的原因)、使用方法之详细攻略

0、SHAP包对每种类型的模型都有解释器

1、树类集成模型案例

2、带有深度解释器的深度学习示例(TensorFlow/Keras模型)

3、带有GradientExplainer (TensorFlow/Keras/PyTorch模型)的深度学习示例

4、使用KernelExplainer的模型无关示例(解释任何函数)

shap库的案例应用

1、基础案例

ML之shap:基于boston波士顿房价回归预测数据集利用Shap值对LiR线性回归模型实现可解释性案例

ML之shap:基于boston波士顿房价回归预测数据集利用shap值对XGBoost模型实现可解释性案例

ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用Shap值对XGBoost模型实现可解释性案例之详细攻略

ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用shap决策图结合LightGBM模型实现异常值检测案例之详细攻略

2、进阶案例

 ML之shap:基于boston波士顿房价回归预测数据集利用Shap值对LiR线性回归模型实现可解释性案例

ML之shap:基于boston波士顿房价回归预测数据集利用shap值对XGBoost模型实现可解释性案例

ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用Shap值对XGBoost模型实现可解释性案例之详细攻略

ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用shap决策图结合LightGBM模型实现异常值检测案例之详细攻略

DataScience&ML:基于heart disease心脏病分类预测数据集利用决策数算法基于graphviz/eli5/pdpbox/shap库实现模型可解释性(全局/部分/局部解释)之详细攻略

ML之shap:基于titanic泰坦尼克是否获救二分类预测数据集利用shap值对RF随机森林和LightGBM模型实现可解释性案例(量化特征对模型贡献度得分)+图中数据详细解释

ML之CatBoost:金融风控之通过数据预处理(中位数填充/校验同分布/文本型日期拆解/平均数编码-标签编码)利用CatBoost算法+模型可解释性(Shap/LIME)预测用户的车险是否为欺诈行为

ML之shap:基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用RF随机森林+计算SHAP值单样本力图/依赖关系贡献图可视化实现可解释性之攻略

ML之LightGBM:通过数据预处理(分布图热图/特征分箱/标签编码)利用LightGBM实现银行客户是否购买产品二分类预测(交叉训练/AUC曲线可视化/Shap模型可解释)之详细攻略

XAI之Alibi:基于泰坦尼克号数据集(填充+标签编码)利用SeldonAlibi库(Anchor/KernelShap/AGN算法)实现模型可解释性的二分类预测(AUC和F1评估)应用案例实现代码

LLMs之Clustering-with-LLM:基于银行营销数据集依次利用Kmeans、K-Prototype和Kmeans+LLM算法(肘部法等+PCA/MCA/T-SNE降维技术+Shap解释技术)并对比实现客群分类/高质量划分实战案例


相关文章

XAI之SHAP:SHAP算法(How—每个特征如何重要/解释单个样本的预测)的简介(背景/思想/作用/原理/核心技术点/优缺点)、常用工具库、应用案例之详细攻略

https://yunyaniu.blog.csdn.net/article/details/125710595

shap库的简介

        SHAP (SHapley Additive explanation)是一种博弈论方法,用于解释任何机器学习模型的输出。它利用博弈论及其相关扩展中的经典沙普利值,将最优信贷分配与当地解释联系起来(详见论文)。

github

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值