Py之shap:shap库的简介、安装、使用方法之详细攻略
目录
XAI之SHAP:SHAP算法(How—每个特征如何重要/解释单个样本的预测)的简介(背景/思想/作用/原理/核心技术点/优缺点)、常用工具库、应用案例之详细攻略
Python之shap:深度剖析shap.datasets.adult()源码中的X,y和X_display,y_display输出数区别
Python之shap:shap.force_plot函数的源码解读之详细攻略
Py之shap:shap.explainers.shap_values函数的简介、解读(shap_values[1]索引为1的原因)、使用方法之详细攻略
2、带有深度解释器的深度学习示例(TensorFlow/Keras模型)
3、带有GradientExplainer (TensorFlow/Keras/PyTorch模型)的深度学习示例
4、使用KernelExplainer的模型无关示例(解释任何函数)
ML之shap:基于boston波士顿房价回归预测数据集利用Shap值对LiR线性回归模型实现可解释性案例
ML之shap:基于boston波士顿房价回归预测数据集利用shap值对XGBoost模型实现可解释性案例
ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用Shap值对XGBoost模型实现可解释性案例之详细攻略
ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用shap决策图结合LightGBM模型实现异常值检测案例之详细攻略
ML之shap:基于boston波士顿房价回归预测数据集利用Shap值对LiR线性回归模型实现可解释性案例
ML之shap:基于boston波士顿房价回归预测数据集利用shap值对XGBoost模型实现可解释性案例
ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用Shap值对XGBoost模型实现可解释性案例之详细攻略
ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用shap决策图结合LightGBM模型实现异常值检测案例之详细攻略
DataScience&ML:基于heart disease心脏病分类预测数据集利用决策数算法基于graphviz/eli5/pdpbox/shap库实现模型可解释性(全局/部分/局部解释)之详细攻略
ML之shap:基于titanic泰坦尼克是否获救二分类预测数据集利用shap值对RF随机森林和LightGBM模型实现可解释性案例(量化特征对模型贡献度得分)+图中数据详细解释
ML之CatBoost:金融风控之通过数据预处理(中位数填充/校验同分布/文本型日期拆解/平均数编码-标签编码)利用CatBoost算法+模型可解释性(Shap/LIME)预测用户的车险是否为欺诈行为
ML之shap:基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用RF随机森林+计算SHAP值单样本力图/依赖关系贡献图可视化实现可解释性之攻略
ML之LightGBM:通过数据预处理(分布图热图/特征分箱/标签编码)利用LightGBM实现银行客户是否购买产品二分类预测(交叉训练/AUC曲线可视化/Shap模型可解释)之详细攻略
XAI之Alibi:基于泰坦尼克号数据集(填充+标签编码)利用SeldonAlibi库(Anchor/KernelShap/AGN算法)实现模型可解释性的二分类预测(AUC和F1评估)应用案例实现代码
相关文章
XAI之SHAP:SHAP算法(How—每个特征如何重要/解释单个样本的预测)的简介(背景/思想/作用/原理/核心技术点/优缺点)、常用工具库、应用案例之详细攻略
https://yunyaniu.blog.csdn.net/article/details/125710595
shap库的简介
SHAP (SHapley Additive explanation)是一种博弈论方法,用于解释任何机器学习模型的输出。它利用博弈论及其相关扩展中的经典沙普利值,将最优信贷分配与当地解释联系起来(详见论文)。
github: