文章目录
一、引言
在RAG(Retrieval-Augmented Generation,检索增强生成)系统的开发和部署过程中,评估工具和框架起着至关重要的作用。它们帮助我们衡量系统的性能,识别潜在问题,并指导优化方向。本文将推荐一些常用的RAG评估工具和框架,包括RAGAS、ARES、DeepEval等,并通过实际示例展示其应用。
二、常用的RAG评估工具和框架
1. RAGAS
1.1 简介
RAGAS(Retrieval-Augmented Generation Assessment)是一个专为评估RAG系统设计的框架。它通过一系列定制的评估指标,帮助开发者全面了解RAG系统的性能。RAGAS支持本地和分布式评估,可以无缝集成到流行的LLM框架中[59]。
1.2 特点
- 定制化评估指标:提供上下文召回率、忠实度、事实正确性等指标。
- 测试数据生成:自动生成合成测试集,覆盖各种场景。
- 无缝集成:与LangChain等