AI学习指南RAG篇(11)-评估工具与框架

在这里插入图片描述

一、引言

在RAG(Retrieval-Augmented Generation,检索增强生成)系统的开发和部署过程中,评估工具和框架起着至关重要的作用。它们帮助我们衡量系统的性能,识别潜在问题,并指导优化方向。本文将推荐一些常用的RAG评估工具和框架,包括RAGAS、ARES、DeepEval等,并通过实际示例展示其应用。

二、常用的RAG评估工具和框架

1. RAGAS

1.1 简介

RAGAS(Retrieval-Augmented Generation Assessment)是一个专为评估RAG系统设计的框架。它通过一系列定制的评估指标,帮助开发者全面了解RAG系统的性能。RAGAS支持本地和分布式评估,可以无缝集成到流行的LLM框架中[59]。

1.2 特点
  • 定制化评估指标:提供上下文召回率、忠实度、事实正确性等指标。
  • 测试数据生成:自动生成合成测试集,覆盖各种场景。
  • 无缝集成:与LangChain等
### RAG 评估工具的技术实现教程 #### 工具概述 RAG(Retrieval-Augmented Generation)是一种结合检索和生成模型的技术,其目标是提升自然语言处理任务中的性能。为了有效评估 RAG 的质量,业界已开发多种工具和服务。这些工具通常支持自动化的定量分析以及部分手动验证功能[^1]。 一种广泛使用的开源框架名为 `ragas`,它由 GitHub 用户 `explodinggradients` 提供维护和支持。此框架旨在简化对 RAG 流水线的评价流程,并提供了一系列预定义的标准指标集合[^3]。以下是该工具的主要特点: - **模块化设计**:允许开发者针对不同阶段独立测试检索器、生成器或者整体流水线的表现。 - **内置评分体系**:涵盖了精确匹配率(Precision),召回率(Recall),BLEU分数等多个维度的数据统计方式。 - **灵活性高**:用户能够自定义额外的度量标准以适应特定应用场景需求。 对于希望深入了解具体操作步骤的学习者来说,官方文档提供了详尽指导材料,包括但不限于安装指南、配置说明及案例演示等内容[^4]。 #### 技术实现要点 下面给出一段基于 Python 实现简单版本 ragas 集成的例子: ```python from transformers import pipeline import ragas # 初始化必要的组件 qa_pipeline = pipeline("question-answering") def evaluate_rag(data_path, model_name="distilbert-base-cased-distilled-squad"): evaluator = ragas.Evaluator(model=model_name) with open(data_path,'r') as file: dataset = json.load(file) results = [] for item in tqdm(dataset): question = item['question'] context = item['context'] result = qa_pipeline(question=question, context=context) score = evaluator.score(result["answer"], reference=item.get('answers', [])) results.append({"question": question,"scored_answer":result["answer"],"metrics_scores":score}) return pd.DataFrame(results) if __name__ == "__main__": df_results = evaluate_rag('./test_data.json') print(df_results.head()) ``` 上述脚本展示了如何加载一个预训练好的问答模型并通过调用 `evaluate_rag()` 函数完成一系列样本上的评测工作流[^2]。 #### 注意事项 尽管存在诸多优秀的解决方案可供选用,在实际部署过程中仍需注意以下几点: - 数据隐私保护问题; - 不同业务场景下可能需要调整权重分配给各个子项得分的情况; - 定期更新所依赖的基础资源库以便获得最新研究成果带来的改进效益等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值