机器学习里面什么叫梯度上升,什么叫梯度下降

机器学习里面什么叫梯度上升,什么叫梯度下降

在机器学习中,梯度上升(Gradient Ascent)梯度下降(Gradient Descent) 是两种常用的优化算法,用于寻找函数的极值(最大值或最小值)。它们的核心思想都是利用函数的梯度信息,逐步逼近函数的极值点。


📌1. 梯度下降(Gradient Descent)

梯度下降的目的是:

找到函数的最小值点

原理:

  • 梯度(gradient)表示函数变化最快的方向。
  • 梯度下降法沿着梯度的反方向(即负梯度方向)更新参数,从而使函数值逐步减小。

公式表达:
假设有函数 f(x)f(x)f(x), 当前参数为 xxx, 梯度为 ∇f(x)\nabla f(x)∇f(x), 则梯度下降的更新规则为:

xnew=xold−

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医疗AI强化曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值