机器学习里面什么叫梯度上升,什么叫梯度下降
在机器学习中,梯度上升(Gradient Ascent) 和 梯度下降(Gradient Descent) 是两种常用的优化算法,用于寻找函数的极值(最大值或最小值)。它们的核心思想都是利用函数的梯度信息,逐步逼近函数的极值点。
📌1. 梯度下降(Gradient Descent)
梯度下降的目的是:
找到函数的最小值点
原理:
- 梯度(gradient)表示函数变化最快的方向。
- 梯度下降法沿着梯度的反方向(即负梯度方向)更新参数,从而使函数值逐步减小。
公式表达:
假设有函数 f(x)f(x)f(x), 当前参数为 xxx, 梯度为 ∇f(x)\nabla f(x)∇f(x), 则梯度下降的更新规则为:
xnew=xold−