自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

强化学习曾小健

强化学习、大模型、AIGC、AGI

  • 博客(5017)
  • 资源 (1)
  • 收藏
  • 关注

原创 我叫曾小健,开发第一线:新Windows与开发环境:大模型LLM/量化 Win-Mac统一快捷键体验 win强制关机:shutdown /s /f /t 0

对于开发者用Windows来说,最大的建议就是不要用Windows,既然必须要用,那就来吧!!!

2023-07-24 10:45:24 435 1

原创 Ubuntu Linux AI大模型开发常用命令 - 更新中 包括NVIDIA状态,和安装相关常用软件包,没事就背背 - 背诵创造美好生活

Ubuntu AI大模型开发常用命令 - 更新中 包括NVIDIA状态,NVIDIA状态,实时更新:和安装相关常用软件包没事就背背,增加开发效率。

2023-06-21 11:28:05 652 1

原创 反超OpenAI,百川开源大模型医疗能力登顶世界第一

针对医疗领域用户隐私考虑下的模型私有化部署需求,我们对Baichuan-M2进行了极致轻量化,量化后的模型精度接近无损,可以在RTX4090上单卡部署,相比DeepSeek-R1 H20双节点部署的方式,成本降低了57倍。在大语言模型的发展中,“知识”与“能力”是两条相辅相成但又相对独立的主线,模型在医学考试(如 USMLE)上的表现被视为衡量医疗水平的重要指标,但随着题库饱和,这类选择题或短回复的评测难以反映模型的临床实用性,医疗 AI 并不等于“刷题机器”,分数再高也不意味着在真实医疗场景中好用。

2025-08-11 14:22:13 617

原创 详细说明Gemma2相对于Gemma1改进了哪些?优势是哪些?

详细说明Gemma2相对于Gemma1改进了哪些?优势是哪些?

2025-08-11 14:20:12 504

原创 请详细说明Gemma3在Gemma2上改进了什么,有哪些优劣和异同

请详细说明Gemma3在Gemma2上改进了什么,有哪些优劣和异同。

2025-08-11 11:55:11 457

原创 动作控制中回归点估计为什么造成 模态塌缩(平均动作)? VLA中的模态探索和图文模型的模态探索有什么区别?详述模态坍缩的概念

L1 范数L2 范数在回归里我们用“残差”ei=yi−y^ie_i=y_i-\hat y_iei​=yi​−y^​i​ 来做损失L1 损失(绝对误差和)平均化后就是L2 损失(平方误差和)平均化后就是结论:在作为误差度量的语境里,“L1”≈“MAE”“L2”≈“MSE”,只差一个是否取平均(常数因子,不影响 arg⁡min⁡\arg\minargmin 的解)。但“L1 / L2”也可能指正则化(见 §4),要看上下文。已思考 18s简要说结论:用L2/MSE。

2025-08-11 11:17:53 536

原创 一文了解:英伟达 H200从单卡到整机的全流程组装【注意事项】

H200 GPU作为当前旗舰级AI加速卡,其从单卡组装到整机部署的全流程涉及多个关键步骤和技术要点。从单卡模组组装开始,到最终整合为完整服务器系统的全流程,包括硬件安装、散热系统配置、系统初始化以及大规模集群部署的注意事项。1. 防静电准备:将装有GPU模组的防静电保护袋与服务器未上漆金属表面接触放电,然后取出模组放置在防静电表面上。4. 保护盖安装:最后将塑胶盖安装在GPU和散热槽模组上,确保固定到位。抓住GPU和散热槽模组,对齐GPU基板上的两个导孔。2025年08月09日 18:53。

2025-08-11 10:52:16 180

原创 万字长文:揭秘GPT-5背后的“超级大脑”——混合专家模型(MoE)全解析

根据Token的ID或其他固定属性进行哈希,将其分配给固定的专家。这种方法计算简单且负载均衡,但由于缺乏动态性,性能通常较差,常作为基线对比。将路由决策视为一个序列决策问题,使用强化学习(如REINFORCE算法)来训练路由器。理论上这是“正确”的解决方案,因为它能直接优化最终目标(如模型性能),但由于梯度方差高、训练复杂,实践中很少使用。将路由视为一个线性分配问题(Linear Assignment Problem),目标是在满足专家容量限制的前提下,最大化Token到专家的总亲和力。

2025-08-11 10:46:54 236

原创 美团京东的战火,烧到了机器人身上

01。

2025-08-11 10:29:10 631

原创 详细说明基于Diffusion Policy的控制原理,具体怎么进行Vision Language Action控制

详细说明基于Diffusion Policy的控制原理,具体怎么进行Vision Language Action控制。

2025-08-11 10:01:04 610

原创 MedBench: 中国医学大语言模型评估基准的全面总结

​研究背景与动机​。

2025-08-09 01:05:24 315

原创 为什么Qwen采用QK-Norm?这是在什么基础上改进的,目的是什么

在注意力里,先做线性映射q=WQxk=W_K xQK-Norm就是对每个头的 q,kq,kq,k 在最后一维做RMS 归一化(或与之等价的 L2/RMS 归一),再进入 RoPE/打分:(gq,gkg_q,g_kgq​,gk​ 为可学习的逐维/逐头缩放,⊙\odot⊙ 是逐元素乘。随后用 q~,k~\tilde q,\tilde kq~​,k~走RoPE(位置旋转)并做打分:直观上,它把注意力改成“近似余弦相似度+ 可学温度”的形态,控制logits 的量级和分布。

2025-08-08 17:01:43 805

原创 RMSnorm和其他Norm有什么区别?为什么Qwen3用RMSNorm

对每个 token 的特征维度做均方根归一化,不做均值去中心化、通常也没有偏置项\odot\;gx∈Rd:某个位置的隐藏向量ddd:特征维度:可学习的缩放(每维一个 scale;很多实现没有 bias)不减均值只按能量(L2)把向量“缩到合适长度”。先做去均值,再按标准差归一:ScaleNorm(顺带一提)本质上与 RMSNorm 的分母相同(都是 1d∑xk2\sqrt{\tfrac{1}{d}\sum x_k^2}d1​∑xk2​​),但ScaleNorm 的 gg。

2025-08-08 16:49:40 703

原创 ALiBi 的单头打分公式

下面这条就是的单头打分公式(省略了常见的 1/dk1/\sqrt{d_k}1/dk​​ 缩放):+\;逐项解释——:当前要生成/对齐的(第 iii 个 token)。:允许被关注的(第 jjj 个 token)。在注意力里只看过去,通常 j≤ij\le ij≤i。:第 hhh 个注意力头在位置 i/ji/ji/j 处的(维度 dkd_kdk​)。:标准(内容相似度)。。对过去的 token,(j−i)≤0(j-i)\le 0(j−i)≤0,距离越远数值越小(更负)。(常为,各头不同)。

2025-08-08 16:32:47 834

原创 1.1 VLA:一场机器人学的范式革命

机器人的正运动学可以表示为一系列指数映射的乘积:\\\\n \\\\[ T(q) = e^{\\\\hat{\\\\xi}_1 q_1} e^{\\\\hat{\\\\xi}_2 q_2} \\\\cdots e^{\\\\hat{\\\\xi}_n q_n} T(0) \\\\]\\\\n 其中 \\\\(\\\\xi_i\\\\) 是第 \\\\(i\\\\) 个关节的旋量坐标,\\\\(T(0)\\\\) 是零位形下的末端位姿。这是一个非常实践性的问题。理论上,这个方程是精确的,但现实是复杂的。

2025-08-06 17:17:10 875

原创 一手实测OpenAI新开源的GPT OSS,o1和GPT-4o都要过气了。

我们等这一天都等太久了,蹲草莓、蹲Orin、蹲发布会OpenAI终于当了一回字面意义上的OpenAI了。这周大概率还会有GPT5,这款从24年期待到25年,一度被称为AGI起点的模型真的,我现在已经睡不着了,也顾不上时差不时差的了,我要一口气测24小时!别鸽我了,我不差Token,真的。@ 作者 / 卡尔。

2025-08-06 17:15:50 904

原创 说一说语言模型的分类,并举例,比方说decoder only、encoder-only、encoder-decoder,分别列举哪些典型的语言模型

语言模型按照Transformer结构的不同,常见有三类:Encoder-Only、Decoder-Only、Encoder-Decoder。下面详细介绍三种结构和代表性模型:结构特点:只包含编码器部分,能够对整段输入进行双向(上下文)建模,非常适合语义理解类任务,如分类、检索、情感分析等。典型模型:BERT(Bidirectional Encoder Representations from Transformers):最经典的encoder-only模型,预训练目标是Masked Language Mo

2025-08-06 11:16:48 447

原创 先说一说BERT的原理,并说明Robert在BERT之上改进了什么

RoBERTa(Pretraining Approach)是BERT的优化版本,其核心算法依然是掩码语言模型(MLM,Masked Language Modeling),即通过随机掩码(mask)输入文本里一部分词汇,让模型预测这些被掩码的词,从而让模型学习词之间以及上下文之间的关系。RoBERTa采用的依然是多层Transformer编码器结构,自注意力机制让模型更好地捕捉长距离依赖关系,提升对上下文的理解能力。在预训练阶段,RoBERTa输入被分词后的文本序列,将。

2025-08-06 11:06:26 909

原创 【机器人头条】松延动力完成数亿元融资;智元机器人再获新融资;零次方机器人完成亿元级融资;RoboScience完成近2亿融资

松延动力交付战报月度交付首破百台2025年7月1日~31日松延动力累计交付人形机器人105台。2025年7月松延动力量产交付105台人形机器人。N2人形机器人交付量为92台,E1人形机器人交付量为13台,环比增长176%,创下公司成立以来最高量产及交付纪录。启动量产2个月即实现交付量破百,松延动力将持续领跑行业。值得注意的是,松延动力启动量产不足2个月,即实现了单月破百台交付规模的成绩,单月交付量已跻身人形机器人赛道头部。

2025-08-06 09:47:04 859

原创 请说明LLama为什么要用SwiGLU激活函数?请说明SwiGlu的原理。该激活函数和其他激活函数的异同和优劣是什么

LLaMA选用SwiGLU激活函数主要因为:它的门控机制提高了模型对信息的动态选择能力,有助于捕获复杂语义和长距离依赖。Swish激活带来了更平滑的梯度流,缓解了ReLU的“死神经元”问题,使训练更稳定。在多个预训练和下游任务上,SwiGLU表现优于传统激活函数,如ReLU和GELU。其计算效率相对较高,适合大规模模型训练和推理,是大语言模型中越来越受欢迎的激活选择。因此,SwiGLU激活函数成为LLaMA等先进大型语言模型的重要技术创新之一。项目GLUSwiGLU激活函数。

2025-08-05 18:35:49 982

原创 Open Computer Use DeepWiki

然后,代理循环运行,捕获屏幕截图,使用视觉模型进行分析,使用动作模型规划动作,并在沙盒中执行这些动作。有关 LLM 集成的详细信息,请参阅。开放计算机使用 (Open Computer Use) 允许 LLM 通过标准人机界面与完整的 Linux 环境进行交互,在自然语言指令和计算机操作之间架起了一座桥梁。该系统是一个开源项目,旨在实现由大型语言模型 (LLM) 控制的安全云 Linux 计算机。该系统建立在 E2B 桌面沙箱上以确保安全执行,并集成了多个 LLM 提供商来处理计算机操作的不同方面。

2025-08-05 15:32:28 30

原创 概述 deepwiki Coze

开发平台,支持开发者通过可视化设计工具创建、部署和管理 AI 代理。作为字节跳动 Coze 平台的开源版本,它提供了全面的功能,能够以极低的编码要求构建 AI 应用程序。本文档介绍了开源 AI 代理开发平台 Coze Studio,涵盖了该系统的总体架构、核心功能和技术栈。有关全面的设置说明、部署要求和配置详细信息,请参阅。有关 CI/CD 流水线的信息,请参阅。Coze Studio 是一个一体化的。(了解 Go 服务和 API)。有关详细的开发环境设置,请参阅。Volcengine 在内。

2025-08-05 14:50:48 915

原创 为什么llama使用RMSNorm,RMSNorm是在哪个阶段用的,相对于其他normalization方法有什么优势和劣势

Llama模型选用RMSNorm,是为了以更低的计算成本和更佳的训练稳定性满足深层、大规模Transformers的需求,特别适合需要高效推理和并发部署的场景。虽然在某些人工智能任务(如处理高度异常分布的数据)上RMSNorm略有不足,但对于大多数NLP应用和超大参数模型,它能在性能和效率间取得更优平衡。

2025-08-05 14:49:46 435

原创 腾讯王炸!混元小模型开源:手机也能跑AI,256K长文本无压力!

据 NotebookCheck(2025年8月4日)及 GitHub 页面(https://github.com/Tencent-Hunyuan),这些模型在单块消费级 GPU 上即可运行推理,支持移动端部署,显著降低 AI 使用门槛。根据 NotebookCheck 和 Hugging Face(https://huggingface.co/Tencent-Hunyuan),腾讯混元四款小模型以轻量化和高效推理为核心,专为资源受限设备优化。,降低 KV 缓存内存占用,支持 256K token 处理。

2025-08-05 10:53:54 1128

原创 用作科技公司估值一般用什么财务模型? 判断科技人员的价值呢? 什么叫市梦率?为什么meta屡次开出1亿美元年薪

科技公司估值常用折现现金流、收益倍数、收入倍数、公允市场比较等方法,同时考虑快速技术迭代、无形资产和成长潜力。对于早期公司,市场供需与团队潜力往往比财务指标更重要。员工尤其是核心技术人员构成企业知识资本的重要组成。无形资产和知识资本约占上市公司价值的 80%;评估人才价值应关注关键岗位贡献、创新成果和长期潜力。“市梦率”是对互联网泡沫时期估值畸高的戏谑,强调投资者以未来梦想而非盈利支撑的估值。

2025-08-05 03:58:44 901

原创 扩散模型中的scheduler具体作用和原理

在Diffusion Policy机器人控制中,scheduler是驱动模型从高噪动作到精准动作转换的关键机制。它掌控扩散模型采样的时间步和去噪策略,确保生成的动作序列既符合视觉和状态条件,又具备连续性和平滑性,是高效实现机器人多步滚动控制的重要组成部分。扩散模型(Diffusion Model)中的scheduler(调度器)在“图片生成”和“Diffusion Policy中的机器人控制”两个应用场景下,作用和原理基本一致,但关注点和参数设计略有不同。原理几乎一致:都在多步反向采样。

2025-08-05 03:53:13 624

原创 Diffusion Policy具体怎么用于机器人控制,原理和过程是怎样? 和其他控制方法有什么区别

Diffusion Policy实现机器人控制的关键优势在于:通过逐步去噪的方式,从随机动作中逐步凝练出符合当前环境/语境的“最优操作轨迹”,极大提升了控制多样性、连续性和泛化能力。与行为克隆等传统方法相比,它不仅更能刻画实际操作中的复杂多模态特征,还显著提高了任务迁移与零样本学习能力,正成为现代机器人智能体领域的热门技术路径。基于Diffusion Policy训练机器人控制主要是通过模仿学习和扩散模型生成的动作序列,训练一个条件去噪扩散生成器,从输入的视觉及状态信息。

2025-08-05 03:47:07 732

原创 祝贺 Figma 成功上市,首日收盘价115.5美元,涨幅250%

从红杉资本(Sequoia Capital)领投的A轮,到A16z加持的C轮,再到2021年使其估值达到100亿美元的D轮融资,Figma的每一步扩张,都伴随着顶级投资机构的信任投票。我们相信,Figma的故事远未结束,它奠定了一个时代的基石,其真正价值在于它改变了我们创造与协作的方式。,2023年成立至今,服务超过100多家全球AI企业,从阿里巴巴Qwen、Hubsport、Monday 到 Figma、11Labs、Genspark,我们见证了AI全球化影响力的跃迁。我们荣幸地宣布,合作伙伴。

2025-08-05 01:23:56 428

原创 Claude“断供”OpenAI,GPT-5“吓到”CEO,AI内战打响了吗?

Claude断供GPT,是一次高调的“分手声明”。GPT-5即将登场,却连CEO都说它“令人害怕”。这些都预示着一个事实:我们正步入AI代理人时代的“混沌初期”。模型的能力飞涨,但监管尚未到位;任务执行更复杂,但行为可解释性更差;竞争越来越激烈,合作则日渐稀薄。AI不再是单纯的技术产品,而是潜在的“权力代理人”。谁拥有更强模型,谁就掌握了更多认知入口和社会影响力。未来,AI不仅是你的工具,更可能是你的代表、你的同事,甚至是你的“数字影子”。在这样的世界里,我们不光要问:“GPT-5有多强?

2025-08-05 01:21:19 1047

原创 AI+中医|问止中医再闯港交所,这次能否对症上市?

在问止之前,AI赋能影像、AI辅助问诊、AI远程医疗……这些“AI+医疗”的尝试,大多止步于试验阶段,或者被资本冷遇。但AI+中医,正好处在“传统未被科技触碰,需求又真实存在”的那片洼地。问止的价值在于,它在尝试一条从未有企业真正走通的路径:让人工智能成为中医诊疗的“助理”,用算法梳理经方逻辑,把经验医学变成数据模型,再通过线上线下闭环进行规模化复制。这条路能不能走通?问止做了一次勇敢的尝试,也遭遇了所有创业者都会遇到的“成长期烦恼”:盈利压力、合规挑战、用户认知、品牌信任。

2025-08-05 01:15:17 671

原创 QtScrcpy github

可以根据需要,自己编写脚本将键盘按键映射为手机的触摸点击,编写规则在这里。默认自带了针对和平精英手游和抖音进行键鼠映射的映射脚本,开启平精英手游后可以用键鼠像玩端游一样玩和平精英手游,开启抖音映射以后可以使用上下左右方向键模拟上下左右滑动,你也可以按照编写规则编写其他游戏的映射文件,默认按键映射如下:编写自定义脚本放入 keymap 目录点击刷新脚本,确保脚本可以被检测到选择需要的脚本连接手机并启动服务之后,点击应用脚本按(即脚本中定义的SwitchKey)键切换为自定义映射模式。

2025-08-04 17:51:46 734

原创 [AI代聊]俄罗斯小哥ChatGPT找女友:聊了5239个女生,现在订婚了

当 Aleksandr 在 Tinder 上找女孩时,他使用网略爬虫获取图像,最开始 Aleksandr 倾向于那些在 Tinder 上的照片超过两张的女孩。Aleksandr 表示一开始 GPT-3 表现非常糟糕,经常忘记对话,并且由于机器人无法访问 Telegram,因此他失去了一半的潜在约会机会。,他可以获得 18 次配对。面对这一结果,Aleksandr 并没有灰心,和朋友继续升级这个机器人,因此第二代机器人(Datebot V2)出现了,这次,Aleksandr 他们采用:。

2025-08-04 17:40:49 886

原创 pre norm和post norm的区别是? 为什么大模型都用pre norm? 什么情况下用post norm

架构类型公式简写措辞说明Post-Norm在子层 (Self‑Attn 或 FFN)输出加入残差后再归一化,是所采用的结构Towards AI+15维基百科+15NeurIPS Proceedings+15。Pre-Norm在进入子层之前先归一化,是 Xiong et al. 2020 等后来主流模型使用的方案维基百科。模型层数不多 (<6–8 层),且有足够资源调试 learning‑rate warm‑up:Post‑Norm 可能带来更好的泛化或最终性能。

2025-08-04 16:37:54 961

原创 ICLR25|打开RL黑盒,首次证明强化学习存在内在维度瓶颈

对于没有微分几何背景的读者来说,“流形”本身就是一个抽象且难以捉摸的概念。论文中涉及的“微分同胚”、“坐标图卡”、“切空间”等术语会进一步增加理解难度。

2025-08-04 16:09:58 569

原创 人形机器人为何突然“跑”进现实?五大动力揭秘产业加速密码

在汽车整装车间,优必选 Walker S1 承担 80% 以上不规则物料搬运,东风柳汽单条产线减少 15 个工位,人工成本下降 40%。电子厂中,CASBOT 01 实现 0.1mm 精度的笔记本电脑螺丝安装,良品率达 99.8%,打破 “人形机器人只能做简单动作” 的刻板印象。在工业制造领域,人形机器人的应用正在重塑生产流程,成为破解“最后一公里” 难题的关键力量。

2025-08-04 15:55:49 1849

原创 专访OpenAI「IMO金牌」团队:3个人,2个月,让通用AI站上数学之巅

其实我已经和斯坦福大学的一位数学教授通过邮件了,大约一年前,在我们发布相关成果之前,他就通过邮件问我,要不要合作解决一些难的数学问题。答案通常是肯定的,但他们抱怨的一点是,如果问模型一个它不知道答案的问题,它会输出一个听起来非常令人信服但实际上错误的答案,他们必须仔细检查才能发现问题,比如是不是模型偷偷改了一个不等式什么的。这些模型有个很酷的地方,就是虽然我看不懂证明过程,但当模型在思考时,它会用自然语言表达自己的不确定或自信,在整个过程中,它会说一些话,暗示它的状态。我觉得,数学本身就是很难的事之一。

2025-08-04 10:21:46 943

原创 ai视频关键词这么写就对了,运镜效果大大提升!

在做ai视频的时候发现运镜提示词真的太重要的,会写运镜提示词,直接把画面效果提升上去了!2025年08月04日 07:12。斯坦尼康级丝滑横移+前景遮挡穿擦。肾上腺素震颤模式(0.5s脉冲)磁吸式主体追踪+动态构图重构。量子级细节显像(毛孔级纹理)微震动手持模拟+浅景深呼吸。上帝视角几何构图+云层透视。无人机探针视角(螺旋下降)龙卷风式螺旋环绕+速度变速。呼吸感推进+轻微变售扭曲。离心力拉伸+背景动态模糊。窥视感仰角摇动+光线渐变。焦点爆破转场(径向模糊)沉浸式POV空间包裹感。星轨位移叠加动态蒙版。

2025-08-04 10:17:44 104

原创 Qwen和DeepSeek为什么都用Pre-Norm?

值得一提的是,Pytorch 中 LayerNorm 的特征统计总体其实是以 Instance Norm 的方式,同时将 scale 和 bias 设置为矢量(Instance Norm 中是标量)。是对 DeepNorm 的改进,动态调整残差缩放因子,提升训练后期的模型表达能力,从而兼顾 DeepNorm 的稳定性和 LayerNorm 的表达能力。DeepNorm 在大模型中用的不多,简单概括就是:对残差连接加入类似门控的缩放因子 α,使得超深 Transformer 在训练中更加稳定和高效。

2025-08-04 10:13:13 1587

原创 盘点一下!大模型训练的时间都花在哪了?

Chongjie2025年08月03日 17:06四川原文:https://zhuanlan.zhihu.com/p/1933883029148922068随着模型规模越来越大,大模型时代的工程能力和 research 能力逐渐变得同等重要。还记得几年前做科研经常看到一些paper改几行matlab、python,就能取得有效的的 performance。不过在当下,我估计很难了。现如今大模型的训练、复杂的代码嵌套和各种工程挑战,我觉得对曾经做学术的人来说都不是很友好。

2025-08-04 10:05:16 1016

原创 Hinton预言成真!美国大学生掀起本科辍学潮!月入万刀修马桶,不怕AI裁员

根据美国劳工统计局的数据,美国增长最快的职业是风力涡轮机技术人员和太阳能电池板安装工,其次是医疗保健行业,以及一些科技行业的职位,如数据分析师或信息安全分析师。对此,康奈尔大学教授John McCarthy警告称,「AI对早期职业的冲击已经很明显,但令人担忧的是,这一代年轻人可能面临永久性的职业路径重塑」。McCarthy感慨道,「我确实担心,整整一个群体,也就是在AI早期转型阶段毕业的这批人,可能会成为『失落的一代』」。其中考量了,AI在该领域的适用频率,以及应用的成功度。

2025-08-04 09:58:03 849

【长江证券】水下听风,智领深蓝【发现报告 fxbaogao.com】.pdf

【长江证券】水下听风,智领深蓝【发现报告 fxbaogao.com】

2025-06-04

搜索引擎概览 searchengine

搜索引擎概览 searchengine

2024-11-19

11个代码生成相关的论文,20241022更新版本-持续更新,包含代码搜索、代码搜索、代码模型survey、代码评论评估、代码评

find . -mindepth 2 -maxdepth 2 -type f -name "*.pdf" | awk -F/ '{print $(NF-1)}' | sort | uniq -c 2 代码或bug分类 1 代码搜索 1 代码生成 1 代码模型survey 1 代码评论评估 5 代码评估与提示

2024-10-22

10篇代码生成的论文,包括代码评估、代码搜索、代码生成、survey、代码或bug分类

题目 类型 分区 摘要 精读链接 Comparing large language models and humanprogrammers for generating programming code 代码评估 arxiv 评估七种LLMs在生成编程代码方面的性能,探讨不同提示策略对LLMs编码性能的影响,直接比较LLMs与人类程序员的编程能力,评估LLMs在不同编程语言之间生成和翻译代码的能力,以及考察LLMs的计算效率和从过去错误中学习的能力。 A Comparison of the Effectiveness of ChatGPT andCo-Pilot for Generating Quality Python Code 代码评估 会议 包括评估ChatGPT和Copilot在解决LeetCode编程问题上的有效性,探讨ChatGPT在接收到反馈后纠正代码的能力,以及其在提高代码质量和性能方面的潜力。 Program Code Generation with Generative AIs 代码评估 MDPI水刊-Algorithms非SCI 比较了人类生成的代码

2024-10-21

Multimodal Representation for Neural Code Search

—Semantic code search is about finding semantically relevant code snippets for a given natural language query. In the state-of-the-art approaches, the semantic similarity between code and query is quantified as the distance of their representation in the shared vector space. In this paper, to improve the vector space, we introduce tree-serialization methods on a simplified form of AST and build the multimodal representation for the code data. We conduct extensive experiments using a single corpu

2024-10-21

[MDPI水刊Algorithm非SCI]Program Code Generation with Generative AIs

[MDPI水刊-非SCI]Program Code Generation with Generative AIs

2024-10-21

Evolving code with a large language model

Evolving code with a large language model

2024-10-19

avx2_tensorflow-1.9.0-cp36-cp36m-win_amd64.zip

avx2_tensorflow1.9.0_win,avx2_tensorflow-1.9.0-cp36-cp36m-win_amd64.whl

2020-04-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除