BM48 数据流中的中位数

本文介绍了一种利用大根堆和小根堆实现实时计算数据流中位数的方法。通过保持两个堆的平衡,可以高效地插入新数据并获取当前中位数。当数据量为奇数时,中位数为大根堆的顶部元素;为偶数时,中位数是两个堆顶元素的平均值。这种方法保证了在数据流不断变化时,仍能快速准确地得到中位数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。

思路:建立一个 大根堆 A 和 小根堆 B ,各保存列表的一半元素。
    当两堆的数据个数相等时候,左边堆添加元素。
    采用的方法不是直接将数据插入左边堆,而是将数据先插入右边堆,算法调整后,将堆顶的数据插入到左边堆,这样保证左边堆插入的元素始终是右边堆的最小值。
    同理左边数据多,往右边堆添加数据的时候,先将数据放入左边堆,选出最大值放到右边堆中。

#include<queue>
#include<vector>
#include<functional>
using namespace std;

class Solution {
	priority_queue<int,vector<int>,less<int> > maxHeap;//大根堆,堆顶为最大值
	priority_queue<int, vector<int>, greater<int> > minHeap;//小根堆,堆顶为最小值

public:
	void Insert(int num) {
		if (maxHeap.size() == minHeap.size())
		{
			minHeap.push(num);
			maxHeap.push(minHeap.top());
			minHeap.pop();
		}
		else
		{
			maxHeap.push(num);
			minHeap.push(maxHeap.top());
			maxHeap.pop();
		}
	}

	double GetMedian() {
		if (maxHeap.size() == minHeap.size())
			return (maxHeap.top() + minHeap.top()) / 2.0;
		else
			return maxHeap.top()*1.0;
	}

};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉浮一湘蕉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值