​Transformer模型中,QKV(Query、Key、Value);判断一个Transformer模型中有多少头(即注意力头数)

1203 篇文章 ¥199.90 ¥299.90

目录

 Transformer模型中,QKV(Query、Key、Value)

QKV的生成过程

举例说明

QKV的含义

举例说明

判断一个Transformer模型中有多少头(即注意力头数)

1. 查看模型架构描述

2. 分析模型参数

3. 使用模型分析工具

4. 查阅相关文献或资源

示例

多头注意力

多头注意力的设定

多头注意力代表什么

举例说明


 Transformer模型中,QKV(Query、Key、Value)

在Transformer模型中,QKV(Query、Key、Value)是通过输入序列中每个元素的嵌入向量(embedding)经过线性变换生成的。这三个向量在自注意力机制中扮演着关键角色,用于计算输入序列中不同位置之间的关联性和重要性。

QKV的生成过程

  1. 嵌入向量(Embedding)
    • 对于输入序列中的每个元素(如单词、字符等),首先通过一个嵌入矩阵将其转换为一个固定维度的向量表示。这个向量就是该元素的嵌入向量。
  2. 线性变换
    • 接着,对于每个嵌入向量,通过三个不同的线性变换(即Query、Key、Value变换)来生成对应的Q、K、V向量。这些线性变换通常是通过与权重矩阵相乘来实现的。
    • 具体来说,对于输入序列中的某个元素的嵌入向量E,有:
      • Q=E⋅WQ​
Transformer模型中,Query(查询)、Key(键)和Value(值)是实现注意力机制(尤其是自注意力机制)的核心组件。它们的作用是捕捉输入序列中不同位置之间的依赖关系,从而使得模型能够动态地关注与当前任务最相关的部分。 ### QueryKeyValue 的作用 - **Query** 代表当前需要处理的位置的特征信息,用于寻找与之相关的内容。 - **Key** 是所有位置的特征表示,通过与Query进行相似度计算,来确定哪些位置的信息对当前Query更重要。 - **Value** 是每个位置的实际内容表示,最终通过加权求和的方式被选择性地传递给下一个模块。 这种机制的核心思想是:对于每一个Query,都会计算它与其他所有Key之间的匹配程度,进而得到一组权重,并将这些权重应用于对应的Values上,从而生成一个加权后的输出。 ### 实现机制 #### 1. 线性变换 在标准的Transformer架构中,输入的嵌入向量会分别通过三个可学习的线性变换矩阵 $ W_Q $、$ W_K $ 和 $ W_V $ 来生成QueryKeyValue。这一步可以表示为: $$ Q = XW_Q $$ $$ K = XW_K $$ $$ V = XW_V $$ 其中 $ X $ 是输入的嵌入向量,而 $ W_Q $、$ W_K $ 和 $ W_V $ 是训练过程中优化的参数。 #### 2. 注意力得分计算 接下来,使用QueryKey计算注意力得分(Attention Score)。通常采用点积方式,并经过缩放以防止梯度消失: $$ \text{Attention Score} = \frac{QK^T}{\sqrt{d_k}} $$ 这里 $ d_k $ 是QueryKey的维度,用于缩放以稳定梯度。 #### 3. Softmax 归一化 为了将注意力得分转化为概率分布,会对结果应用Softmax函数,从而获得各个位置的归一化权重: $$ \text{Weights} = \text{Softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right) $$ #### 4. 加权求和 最后,使用上述权重对Value进行加权求和,得到最终的输出: $$ \text{Output} = \text{Weights} \cdot V $$ ### 示例代码 以下是一个简单的PyTorch实现示例,展示了如何构建QueryKeyValue,并计算注意力得分: ```python import torch import torch.nn as nn class SelfAttention(nn.Module): def __init__(self, embed_size, heads): super(SelfAttention, self).__init__() self.embed_size = embed_size self.heads = heads self.head_dim = embed_size // heads assert ( self.head_dim * heads == embed_size ), "Embedding size needs to be divisible by heads" # 定义线性变换层 self.values = nn.Linear(self.head_dim, embed_size) self.keys = nn.Linear(self.head_dim, embed_size) self.queries = nn.Linear(self.head_dim, embed_size) def forward(self, x): batch_size, seq_len, embed_dim = x.shape # 将输入分割成多个 values = self.values(x).view(batch_size, seq_len, self.heads, self.head_dim) keys = self.keys(x).view(batch_size, seq_len, self.heads, self.head_dim) queries = self.queries(x).view(batch_size, seq_len, self.heads, self.head_dim) # 调整维度以便于计算注意力得分 values = values.transpose(1, 2) keys = keys.transpose(1, 2) queries = queries.transpose(1, 2) # 计算注意力得分 energy = torch.matmul(queries, keys.transpose(-2, -1)) / (self.embed_size ** (1/2)) # 应用Softmax函数 attention = torch.nn.functional.softmax(energy, dim=-1) # 计算加权输出 out = torch.matmul(attention, values).transpose(1, 2).contiguous() out = out.view(batch_size, seq_len, embed_dim) return out ``` ### 多注意力机制 在实际的Transformer模型中,多注意力机制(Multi-Head Attention)被广泛使用。其核心思想是将QueryKeyValue分成多个“”并行处理,然后将各个的结果拼接起来并通过一个额外的线性层进行整合。这种方法可以增强模型捕捉不同特征的能力。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值