目录
LLM的流水线并行和张量并行区别
流水线并行(Pipeline Parallelism)和张量并行(Tensor Parallelism)是深度学习领域中两种重要的并行计算策略,它们各自具有独特的特点和适用场景。以下是对这两种并行方式的详细对比:
一、定义与原理
-
流水线并行
- 定义:流水线并行是一种将神经网络中的算子切分成多个阶段(Stage),再把阶段映射到不同的设备上,使得不同设备去计算神经网络的不同部分的并行计算策略。
- 原理:它将模型在空间上按阶段进行切分,每个阶段只需执行网络的一部分,可以大大节省内存开销,同时缩小通信域,缩短通信时间。这种并行方式特别适用于模型层数较多且计算量大的情况。
-
张量并行