有哪些词编码模型

1809 篇文章 ¥199.90 ¥299.90
1398 篇文章 ¥199.90 ¥299.90
1208 篇文章 ¥199.90 ¥299.90

有哪些词编码模型

词编码模型:是将自然语言符号映射为稠密的高维向量,使语义相近的词汇在向量空间中位置接近。

不过,也有部分模型会考虑字母或字符信息,如基于字节对编码(BPE)的模型会将单词拆分成子词,这里的子词可能是字母组合。

词编码模型的原理主要是通过机器学习算法,在大规模文本语料库上学习词的语义表示,将词映射到一个低维向量空间,使得向量之间的关系能够反映词与词之间的语义关系,如相似性、相关性等。常见的词编码模型原理如下:

  • Word2Vec原理:Word2Vec是一个两层神经网络,可通过处理文本数据生成词向量。它有连续词袋模型(CBOW)和跳字模型(Skip - gram)两种架构

CBOW模型根据目标词周围的上下文词来预测目标词,如对于句子“the cat sat on the mat”,若目标词是“cat”,则利用“the”“sat”“on”“the”“mat”来预测“cat”。

Skip - gram模型则相反,它根据目标词来预测其周围的上下文词,即以“cat”为输入,预测“the”“sat”“on”“the”“mat”。在训练过程中,模型会不断更新词向量,使出现在相似上下文中的词的向量在向量空间中更接近。

  • BERT原理:BERT是基于Transformer编码器的模型,采用掩码语言建模和下一个句子预测任务进行预训练。掩码语言建模是在输入序
### 当前流行的大型AI预训练模型 #### 变压器架构的发展及其应用 近年来,基于变压器(Transformer)架构的预训练模型已经成为自然语言处理领域的重要组成部分。这些模型通过大规模语料库上的无监督学习来捕捉复杂的模式和上下文关系,在多种下游任务上表现出卓越性能。 BERT是一个典型的例子,它采用深度双向变换器来进行语言理解的任务[^2]。该模型不仅能够有效地表示单个的意义,还能建模句子间的依赖关系,这在过去的一般语言模型中是难以实现的功能[^3]。 #### OCR技术中的TrOCR 除了传统的NLP应用场景外,变压器也被应用于光学字符识别(OCR)领域。例如,TrOCR利用预先训练好的视觉转换器作为编码器部分,并结合序列到序列框架完成文字检测与识别工作[^1]。这种跨模态的方法显著提高了手写或印刷体文本图像转录的质量。 #### 多模态融合趋势 随着研究进展,越来越多的工作致力于开发可以同时处理不同类型数据(如文本、音频、视频等)的大规模多模态预训练模型。这类系统能够在更广泛的任务范围内提供更加全面的理解能力和服务支持。 ```python # 示例代码展示如何加载并使用Hugging Face Transformers库中的BERT模型 from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') inputs = tokenizer("Hello world!", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值