学习向量量化神经网络

本文介绍了学习向量化(LVQ)神经网络,它结合竞争学习和有监督学习,用于分类任务。LVQ通过教师信号指导输入样本的分类,克服自组织网络的不足。文章详细阐述了向量量化概念、LVQ网络结构、工作原理及学习算法,展示了如何在错误分类时调整权值以提高准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在竞争网络结构的基础上,学习向量化(learning vector quantization,LVQ)网络被提出来,融合竞争学习思想和有监督学习算法的特点,通过教师信号对输入样本的分配类别进行规定,从而克服自组织网络采用无监督学习算法带来的缺乏分类信息的弱点。

1.    向量量化

向量量化的思路是,将高维输入空间分成若干不同的区域,对每个区域确定一个中心向量作为聚类的中心,与其处于同一区域的输入向量可用该中心向量来代表,从而形成了以各中心向量为聚类中心的点集。在图像处理领域常用各区域中心点(向量)的编码代替区域内的点来存储或传输,从而提出了各种基于向量量化的有损压缩技术。

在二维输入平面上表示的中心向量分布称为Voronoi图,如下图所示,前两篇博文介绍的胜者为王的学习规则以及SOFM竞争学习算法都是一种向量量化算法,能用少量聚类中心表示原始数据,从起到数据压缩作用。但SOFM的各聚类中心对应的向量具有某种相似的特征,而一般向量量化的中心不具有这种相似性。

### PostgreSQL 进程类别及其作用 #### 1. 后端进程 (Backend Process) 后端进程负责处理来自客户端的具体请求。每当一个新的客户端连接到 PostgreSQL 数据库时,会启动一个新的后端进程来服务这个特定的连接[^1]。这些进程独立运行并维护着各自的状态信息,包括但不限于当前正在执行的任务详情、事务状态等。 ```bash ps aux | grep postgres ``` 上述命令可以帮助用户查看系统上所有与 PostgreSQL 相关的进程列表,其中就包含了各个后端进程的信息。 #### 2. 主控进程 (Postmaster/Controller Process) 作为整个系统的入口点,主控进程承担着监听新连接到来的责任,并为每一个新的客户端建立相应的后端进程实例。此外,在数据库集群启动之初,也是由主控进程完成必要的初始化工作,比如加载配置文件、准备共享内存区等内容[^3]。 #### 3. 辅助进程 (Helper Processes) 为了优化性能和支持更多特性,PostgreSQL 设计了一些专门用途的支持型后台作业: - **WAL Writer**: 负责定期将写前日志(WAL)条目刷入磁盘,从而减轻检查点期间的工作负担。 - **Checkpointer**: 定期触发检查点操作,确保脏页能够及时被同步至持久存储介质中去。 - **Background Worker**: 用户自定义或某些插件注册的服务程序,可用于实现诸如异步任务调度等功能。 以上提到的各种辅助进程共同协作以保障数据库高效稳定地运作[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhang_P_Y

感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值