神经网络概述
BP网络是一类多层的前馈神经网络。它的名字源于在网络训练的过程中,调整网络的权值的算法是误差的反向传播的学习算法,即为BP学习算法。BP算法是 Rumelhart等人在1986年提出来的。由于它的结构简单,可调整的参数多,训练算法也多,而且可操作性好,BP神经网络获得了非常广泛的应用。据统计,有80%~90%的神经网络模型都是采用了BP网络或者是它的变形。BP网络是前向网络的核心部分,是神经网络中最精华、最完美的部分。
BP神经网络虽然是人工神经网络中应用最广泛的算法,但是也存在着一些缺陷,例如学习收敛速度太慢、不能保证收敛到全局最小点、网络结构不易确定。
另外,网络结构、初始连接权值和阈值的选择对网络训练的影响很大,但是又无法准确获得,针对这些特点可以采用遗传算法对神经网络进行优化。
问题描述
本节以某型拖拉机的齿轮箱为工程背景,介绍使用基于遗传算法的BP神经网络进行齿轮箱故障的诊断。统计表明,齿轮箱故障中60%左右都是由齿轮故障导致的,所以这里只研究齿轮故障的诊断。对于齿轮的故障,这里选取了频域中的几个特征量。频域中齿轮故障比较明显的是在啮合频率处的边缘带上。所以在频域特征信号的提取中选取了在2、4、6挡时在1、2、3轴的边频带族∫土ηf,处的幅值An、A,n2和A,a,其中f为齿轮的啮合频率,f为轴的转频,n=1,2,3,=2,4,6表示挡位,=1,2,3表示轴的序号。由于在2轴和3轴上有两对齿轮啮合,所以1、2分别表示两个啮合频率。这样,网络的输入就是一个15维的向量。因为这些数据具有不同的量纲和量级,所以在输入神经网络之前首先进行归一化处理。表3-1和表3-2列出了归一化后的齿轮箱状态样本数据。
从表中可以看出齿轮状态有三种故障模式,因此可以采用如下的形式来表示输出。
无故障:(1,0,0)。
齿根裂纹:(0,1,0)。
断齿:(0,0,1)。
主程序
clc
clear all
close all
%% 加载神经网络的训练样本 测试样本每列一个样本 输入P 输出T
%样本数据就是前面问题描述中列出的数据
load data
% warning('off')
% 初始隐层神经元个数
hiddennum=31;
% 输入向量的最大值和最小值
threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];
inputnum=size(P,1); % 输入层神经元个数
outputnum=size(T,1); % 输出层神经元个数
w1num=inputnum*hiddennum; % 输入层到隐层的权值个数
w2num=outputnum*hiddennum;% 隐层到输出层的权值个数
N=w1num+hiddennum+w2num+outputnum; %待优化的变量的个数
%% 定义遗传算法参数
NIND=40; %个体数目
MAXGEN=5; %最大遗传代数
PRECI=10; %变量的二进制位数
GGAP=0.95; %代沟
px=0.7; %交叉概率
pm=0.01; %变异概率
trace=zeros(N+1,MAXGEN); %寻优结果的初始值
FieldD=[repmat(PRECI,1,N);repmat([-0.5;0.5],1,N);repmat([1;0;1;1],1,N)]; %区域描述器
Chrom=crtbp(NIND,PRECI*N); %初始种群
%% 优化
gen=0; %代计数器
X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换
ObjV=Objfun(X,P,T,hiddennum,P_test,T_test); %计算目标函数值
while gen<MAXGEN
fprintf('%d\n',gen)
FitnV=ranking(ObjV); %分配适应度值
SelCh=select('sus',Chrom,FitnV,GGAP); %选择
SelCh=recombin('xovsp',SelCh,px); %重组
SelCh=mut(SelCh,pm); %变异
X=bs2rv(SelCh,FieldD); %子代个体的十进制转换
ObjVSel=Objfun(X,P,T,hiddennum,P_test,T_test); %计算子代的目标函数值
[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群
X=bs2rv(Chrom,FieldD);
gen=gen+1; %代计数器增加
%获取每代的最优解及其序号,Y为最优解,I为个体的序号
[Y,I]=min(ObjV);
trace(1:N,gen)=X(I,:); %记下每代的最优值
trace(end,gen)=Y; %记下每代的最优值
end
%% 画进化图
figure(1);
plot(1:MAXGEN,trace(end,:));
grid on
xlabel('遗传代数')
ylabel('误差的变化')
title('进化过程')
bestX=trace(1:end-1,end);
bestErr=trace(end,end);
fprintf(['最优初始权值和阈值:\nX=',num2str(bestX'),'\n最小误差err=',num2str(bestErr),'\n'])
运行结果